| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import datetime
- import json
- import logging
- import re
- from copy import deepcopy
- from typing import Tuple
- import jinja2
- import json_repair
- from api.utils import hash_str2int
- from rag.prompts.prompt_template import load_prompt
- from rag.settings import TAG_FLD
- from rag.utils import encoder, num_tokens_from_string
-
-
- STOP_TOKEN="<|STOP|>"
- COMPLETE_TASK="complete_task"
-
-
- def get_value(d, k1, k2):
- return d.get(k1, d.get(k2))
-
-
- def chunks_format(reference):
-
- return [
- {
- "id": get_value(chunk, "chunk_id", "id"),
- "content": get_value(chunk, "content", "content_with_weight"),
- "document_id": get_value(chunk, "doc_id", "document_id"),
- "document_name": get_value(chunk, "docnm_kwd", "document_name"),
- "dataset_id": get_value(chunk, "kb_id", "dataset_id"),
- "image_id": get_value(chunk, "image_id", "img_id"),
- "positions": get_value(chunk, "positions", "position_int"),
- "url": chunk.get("url"),
- "similarity": chunk.get("similarity"),
- "vector_similarity": chunk.get("vector_similarity"),
- "term_similarity": chunk.get("term_similarity"),
- "doc_type": chunk.get("doc_type_kwd"),
- }
- for chunk in reference.get("chunks", [])
- ]
-
-
- def message_fit_in(msg, max_length=4000):
- def count():
- nonlocal msg
- tks_cnts = []
- for m in msg:
- tks_cnts.append({"role": m["role"], "count": num_tokens_from_string(m["content"])})
- total = 0
- for m in tks_cnts:
- total += m["count"]
- return total
-
- c = count()
- if c < max_length:
- return c, msg
-
- msg_ = [m for m in msg if m["role"] == "system"]
- if len(msg) > 1:
- msg_.append(msg[-1])
- msg = msg_
- c = count()
- if c < max_length:
- return c, msg
-
- ll = num_tokens_from_string(msg_[0]["content"])
- ll2 = num_tokens_from_string(msg_[-1]["content"])
- if ll / (ll + ll2) > 0.8:
- m = msg_[0]["content"]
- m = encoder.decode(encoder.encode(m)[: max_length - ll2])
- msg[0]["content"] = m
- return max_length, msg
-
- m = msg_[-1]["content"]
- m = encoder.decode(encoder.encode(m)[: max_length - ll2])
- msg[-1]["content"] = m
- return max_length, msg
-
-
- def kb_prompt(kbinfos, max_tokens, hash_id=False):
- from api.db.services.document_service import DocumentService
-
- knowledges = [get_value(ck, "content", "content_with_weight") for ck in kbinfos["chunks"]]
- kwlg_len = len(knowledges)
- used_token_count = 0
- chunks_num = 0
- for i, c in enumerate(knowledges):
- if not c:
- continue
- used_token_count += num_tokens_from_string(c)
- chunks_num += 1
- if max_tokens * 0.97 < used_token_count:
- knowledges = knowledges[:i]
- logging.warning(f"Not all the retrieval into prompt: {len(knowledges)}/{kwlg_len}")
- break
-
- docs = DocumentService.get_by_ids([get_value(ck, "doc_id", "document_id") for ck in kbinfos["chunks"][:chunks_num]])
- docs = {d.id: d.meta_fields for d in docs}
-
- def draw_node(k, line):
- if line is not None and not isinstance(line, str):
- line = str(line)
- if not line:
- return ""
- return f"\n├── {k}: " + re.sub(r"\n+", " ", line, flags=re.DOTALL)
-
- knowledges = []
- for i, ck in enumerate(kbinfos["chunks"][:chunks_num]):
- cnt = "\nID: {}".format(i if not hash_id else hash_str2int(get_value(ck, "id", "chunk_id"), 100))
- cnt += draw_node("Title", get_value(ck, "docnm_kwd", "document_name"))
- cnt += draw_node("URL", ck['url']) if "url" in ck else ""
- for k, v in docs.get(get_value(ck, "doc_id", "document_id"), {}).items():
- cnt += draw_node(k, v)
- cnt += "\n└── Content:\n"
- cnt += get_value(ck, "content", "content_with_weight")
- knowledges.append(cnt)
-
- return knowledges
-
-
- CITATION_PROMPT_TEMPLATE = load_prompt("citation_prompt")
- CITATION_PLUS_TEMPLATE = load_prompt("citation_plus")
- CONTENT_TAGGING_PROMPT_TEMPLATE = load_prompt("content_tagging_prompt")
- CROSS_LANGUAGES_SYS_PROMPT_TEMPLATE = load_prompt("cross_languages_sys_prompt")
- CROSS_LANGUAGES_USER_PROMPT_TEMPLATE = load_prompt("cross_languages_user_prompt")
- FULL_QUESTION_PROMPT_TEMPLATE = load_prompt("full_question_prompt")
- KEYWORD_PROMPT_TEMPLATE = load_prompt("keyword_prompt")
- QUESTION_PROMPT_TEMPLATE = load_prompt("question_prompt")
- VISION_LLM_DESCRIBE_PROMPT = load_prompt("vision_llm_describe_prompt")
- VISION_LLM_FIGURE_DESCRIBE_PROMPT = load_prompt("vision_llm_figure_describe_prompt")
-
- ANALYZE_TASK_SYSTEM = load_prompt("analyze_task_system")
- ANALYZE_TASK_USER = load_prompt("analyze_task_user")
- NEXT_STEP = load_prompt("next_step")
- REFLECT = load_prompt("reflect")
- SUMMARY4MEMORY = load_prompt("summary4memory")
- RANK_MEMORY = load_prompt("rank_memory")
- META_FILTER = load_prompt("meta_filter")
- ASK_SUMMARY = load_prompt("ask_summary")
-
- PROMPT_JINJA_ENV = jinja2.Environment(autoescape=False, trim_blocks=True, lstrip_blocks=True)
-
-
- def citation_prompt() -> str:
- template = PROMPT_JINJA_ENV.from_string(CITATION_PROMPT_TEMPLATE)
- return template.render()
-
-
- def citation_plus(sources: str) -> str:
- template = PROMPT_JINJA_ENV.from_string(CITATION_PLUS_TEMPLATE)
- return template.render(example=citation_prompt(), sources=sources)
-
-
- def keyword_extraction(chat_mdl, content, topn=3):
- template = PROMPT_JINJA_ENV.from_string(KEYWORD_PROMPT_TEMPLATE)
- rendered_prompt = template.render(content=content, topn=topn)
-
- msg = [{"role": "system", "content": rendered_prompt}, {"role": "user", "content": "Output: "}]
- _, msg = message_fit_in(msg, chat_mdl.max_length)
- kwd = chat_mdl.chat(rendered_prompt, msg[1:], {"temperature": 0.2})
- if isinstance(kwd, tuple):
- kwd = kwd[0]
- kwd = re.sub(r"^.*</think>", "", kwd, flags=re.DOTALL)
- if kwd.find("**ERROR**") >= 0:
- return ""
- return kwd
-
-
- def question_proposal(chat_mdl, content, topn=3):
- template = PROMPT_JINJA_ENV.from_string(QUESTION_PROMPT_TEMPLATE)
- rendered_prompt = template.render(content=content, topn=topn)
-
- msg = [{"role": "system", "content": rendered_prompt}, {"role": "user", "content": "Output: "}]
- _, msg = message_fit_in(msg, chat_mdl.max_length)
- kwd = chat_mdl.chat(rendered_prompt, msg[1:], {"temperature": 0.2})
- if isinstance(kwd, tuple):
- kwd = kwd[0]
- kwd = re.sub(r"^.*</think>", "", kwd, flags=re.DOTALL)
- if kwd.find("**ERROR**") >= 0:
- return ""
- return kwd
-
-
- def full_question(tenant_id=None, llm_id=None, messages=[], language=None, chat_mdl=None):
- from api.db import LLMType
- from api.db.services.llm_service import LLMBundle
- from api.db.services.tenant_llm_service import TenantLLMService
-
- if not chat_mdl:
- if TenantLLMService.llm_id2llm_type(llm_id) == "image2text":
- chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
- else:
- chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
- conv = []
- for m in messages:
- if m["role"] not in ["user", "assistant"]:
- continue
- conv.append("{}: {}".format(m["role"].upper(), m["content"]))
- conversation = "\n".join(conv)
- today = datetime.date.today().isoformat()
- yesterday = (datetime.date.today() - datetime.timedelta(days=1)).isoformat()
- tomorrow = (datetime.date.today() + datetime.timedelta(days=1)).isoformat()
-
- template = PROMPT_JINJA_ENV.from_string(FULL_QUESTION_PROMPT_TEMPLATE)
- rendered_prompt = template.render(
- today=today,
- yesterday=yesterday,
- tomorrow=tomorrow,
- conversation=conversation,
- language=language,
- )
-
- ans = chat_mdl.chat(rendered_prompt, [{"role": "user", "content": "Output: "}])
- ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
- return ans if ans.find("**ERROR**") < 0 else messages[-1]["content"]
-
-
- def cross_languages(tenant_id, llm_id, query, languages=[]):
- from api.db import LLMType
- from api.db.services.llm_service import LLMBundle
- from api.db.services.tenant_llm_service import TenantLLMService
-
- if llm_id and TenantLLMService.llm_id2llm_type(llm_id) == "image2text":
- chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
- else:
- chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
-
- rendered_sys_prompt = PROMPT_JINJA_ENV.from_string(CROSS_LANGUAGES_SYS_PROMPT_TEMPLATE).render()
- rendered_user_prompt = PROMPT_JINJA_ENV.from_string(CROSS_LANGUAGES_USER_PROMPT_TEMPLATE).render(query=query, languages=languages)
-
- ans = chat_mdl.chat(rendered_sys_prompt, [{"role": "user", "content": rendered_user_prompt}], {"temperature": 0.2})
- ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
- if ans.find("**ERROR**") >= 0:
- return query
- return "\n".join([a for a in re.sub(r"(^Output:|\n+)", "", ans, flags=re.DOTALL).split("===") if a.strip()])
-
-
- def content_tagging(chat_mdl, content, all_tags, examples, topn=3):
- template = PROMPT_JINJA_ENV.from_string(CONTENT_TAGGING_PROMPT_TEMPLATE)
-
- for ex in examples:
- ex["tags_json"] = json.dumps(ex[TAG_FLD], indent=2, ensure_ascii=False)
-
- rendered_prompt = template.render(
- topn=topn,
- all_tags=all_tags,
- examples=examples,
- content=content,
- )
-
- msg = [{"role": "system", "content": rendered_prompt}, {"role": "user", "content": "Output: "}]
- _, msg = message_fit_in(msg, chat_mdl.max_length)
- kwd = chat_mdl.chat(rendered_prompt, msg[1:], {"temperature": 0.5})
- if isinstance(kwd, tuple):
- kwd = kwd[0]
- kwd = re.sub(r"^.*</think>", "", kwd, flags=re.DOTALL)
- if kwd.find("**ERROR**") >= 0:
- raise Exception(kwd)
-
- try:
- obj = json_repair.loads(kwd)
- except json_repair.JSONDecodeError:
- try:
- result = kwd.replace(rendered_prompt[:-1], "").replace("user", "").replace("model", "").strip()
- result = "{" + result.split("{")[1].split("}")[0] + "}"
- obj = json_repair.loads(result)
- except Exception as e:
- logging.exception(f"JSON parsing error: {result} -> {e}")
- raise e
- res = {}
- for k, v in obj.items():
- try:
- if int(v) > 0:
- res[str(k)] = int(v)
- except Exception:
- pass
- return res
-
-
- def vision_llm_describe_prompt(page=None) -> str:
- template = PROMPT_JINJA_ENV.from_string(VISION_LLM_DESCRIBE_PROMPT)
-
- return template.render(page=page)
-
-
- def vision_llm_figure_describe_prompt() -> str:
- template = PROMPT_JINJA_ENV.from_string(VISION_LLM_FIGURE_DESCRIBE_PROMPT)
- return template.render()
-
-
- def tool_schema(tools_description: list[dict], complete_task=False):
- if not tools_description:
- return ""
- desc = {}
- if complete_task:
- desc[COMPLETE_TASK] = {
- "type": "function",
- "function": {
- "name": COMPLETE_TASK,
- "description": "When you have the final answer and are ready to complete the task, call this function with your answer",
- "parameters": {
- "type": "object",
- "properties": {"answer":{"type":"string", "description": "The final answer to the user's question"}},
- "required": ["answer"]
- }
- }
- }
- for tool in tools_description:
- desc[tool["function"]["name"]] = tool
-
- return "\n\n".join([f"## {i+1}. {fnm}\n{json.dumps(des, ensure_ascii=False, indent=4)}" for i, (fnm, des) in enumerate(desc.items())])
-
-
- def form_history(history, limit=-6):
- context = ""
- for h in history[limit:]:
- if h["role"] == "system":
- continue
- role = "USER"
- if h["role"].upper()!= role:
- role = "AGENT"
- context += f"\n{role}: {h['content'][:2048] + ('...' if len(h['content'])>2048 else '')}"
- return context
-
-
- def analyze_task(chat_mdl, prompt, task_name, tools_description: list[dict]):
- tools_desc = tool_schema(tools_description)
- context = ""
-
- template = PROMPT_JINJA_ENV.from_string(ANALYZE_TASK_USER)
- context = template.render(task=task_name, context=context, agent_prompt=prompt, tools_desc=tools_desc)
- kwd = chat_mdl.chat(ANALYZE_TASK_SYSTEM,[{"role": "user", "content": context}], {})
- if isinstance(kwd, tuple):
- kwd = kwd[0]
- kwd = re.sub(r"^.*</think>", "", kwd, flags=re.DOTALL)
- if kwd.find("**ERROR**") >= 0:
- return ""
- return kwd
-
-
- def next_step(chat_mdl, history:list, tools_description: list[dict], task_desc):
- if not tools_description:
- return ""
- desc = tool_schema(tools_description)
- template = PROMPT_JINJA_ENV.from_string(NEXT_STEP)
- user_prompt = "\nWhat's the next tool to call? If ready OR IMPOSSIBLE TO BE READY, then call `complete_task`."
- hist = deepcopy(history)
- if hist[-1]["role"] == "user":
- hist[-1]["content"] += user_prompt
- else:
- hist.append({"role": "user", "content": user_prompt})
- json_str = chat_mdl.chat(template.render(task_analisys=task_desc, desc=desc, today=datetime.datetime.now().strftime("%Y-%m-%d")),
- hist[1:], stop=["<|stop|>"])
- tk_cnt = num_tokens_from_string(json_str)
- json_str = re.sub(r"^.*</think>", "", json_str, flags=re.DOTALL)
- return json_str, tk_cnt
-
-
- def reflect(chat_mdl, history: list[dict], tool_call_res: list[Tuple]):
- tool_calls = [{"name": p[0], "result": p[1]} for p in tool_call_res]
- goal = history[1]["content"]
- template = PROMPT_JINJA_ENV.from_string(REFLECT)
- user_prompt = template.render(goal=goal, tool_calls=tool_calls)
- hist = deepcopy(history)
- if hist[-1]["role"] == "user":
- hist[-1]["content"] += user_prompt
- else:
- hist.append({"role": "user", "content": user_prompt})
- _, msg = message_fit_in(hist, chat_mdl.max_length)
- ans = chat_mdl.chat(msg[0]["content"], msg[1:])
- ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
- return """
- **Observation**
- {}
-
- **Reflection**
- {}
- """.format(json.dumps(tool_calls, ensure_ascii=False, indent=2), ans)
-
-
- def form_message(system_prompt, user_prompt):
- return [{"role": "system", "content": system_prompt},{"role": "user", "content": user_prompt}]
-
-
- def tool_call_summary(chat_mdl, name: str, params: dict, result: str) -> str:
- template = PROMPT_JINJA_ENV.from_string(SUMMARY4MEMORY)
- system_prompt = template.render(name=name,
- params=json.dumps(params, ensure_ascii=False, indent=2),
- result=result)
- user_prompt = "→ Summary: "
- _, msg = message_fit_in(form_message(system_prompt, user_prompt), chat_mdl.max_length)
- ans = chat_mdl.chat(msg[0]["content"], msg[1:])
- return re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
-
-
- def rank_memories(chat_mdl, goal:str, sub_goal:str, tool_call_summaries: list[str]):
- template = PROMPT_JINJA_ENV.from_string(RANK_MEMORY)
- system_prompt = template.render(goal=goal, sub_goal=sub_goal, results=[{"i": i, "content": s} for i,s in enumerate(tool_call_summaries)])
- user_prompt = " → rank: "
- _, msg = message_fit_in(form_message(system_prompt, user_prompt), chat_mdl.max_length)
- ans = chat_mdl.chat(msg[0]["content"], msg[1:], stop="<|stop|>")
- return re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
-
-
- def gen_meta_filter(chat_mdl, meta_data:dict, query: str) -> list:
- sys_prompt = PROMPT_JINJA_ENV.from_string(META_FILTER).render(
- current_date=datetime.datetime.today().strftime('%Y-%m-%d'),
- metadata_keys=json.dumps(meta_data),
- user_question=query
- )
- user_prompt = "Generate filters:"
- ans = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_prompt}])
- ans = re.sub(r"(^.*</think>|```json\n|```\n*$)", "", ans, flags=re.DOTALL)
- try:
- ans = json_repair.loads(ans)
- assert isinstance(ans, list), ans
- return ans
- except Exception:
- logging.exception(f"Loading json failure: {ans}")
- return []
|