| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import logging
- import re
- import time
- from copy import deepcopy
- from functools import partial
- from typing import TypedDict, List, Any
- from agent.component.base import ComponentParamBase, ComponentBase
- from api.utils import hash_str2int
- from rag.llm.chat_model import ToolCallSession
- from rag.prompts.prompts import kb_prompt
- from rag.utils.mcp_tool_call_conn import MCPToolCallSession
- from timeit import default_timer as timer
-
-
- class ToolParameter(TypedDict):
- type: str
- description: str
- displayDescription: str
- enum: List[str]
- required: bool
-
-
- class ToolMeta(TypedDict):
- name: str
- displayName: str
- description: str
- displayDescription: str
- parameters: dict[str, ToolParameter]
-
-
- class LLMToolPluginCallSession(ToolCallSession):
- def __init__(self, tools_map: dict[str, object], callback: partial):
- self.tools_map = tools_map
- self.callback = callback
-
- def tool_call(self, name: str, arguments: dict[str, Any]) -> Any:
- assert name in self.tools_map, f"LLM tool {name} does not exist"
- st = timer()
- if isinstance(self.tools_map[name], MCPToolCallSession):
- resp = self.tools_map[name].tool_call(name, arguments, 60)
- else:
- resp = self.tools_map[name].invoke(**arguments)
-
- self.callback(name, arguments, resp, elapsed_time=timer()-st)
- return resp
-
- def get_tool_obj(self, name):
- return self.tools_map[name]
-
-
- class ToolParamBase(ComponentParamBase):
- def __init__(self):
- #self.meta:ToolMeta = None
- super().__init__()
- self._init_inputs()
- self._init_attr_by_meta()
-
- def _init_inputs(self):
- self.inputs = {}
- for k,p in self.meta["parameters"].items():
- self.inputs[k] = deepcopy(p)
-
- def _init_attr_by_meta(self):
- for k,p in self.meta["parameters"].items():
- if not hasattr(self, k):
- setattr(self, k, p.get("default"))
-
- def get_meta(self):
- params = {}
- for k, p in self.meta["parameters"].items():
- params[k] = {
- "type": p["type"],
- "description": p["description"]
- }
- if "enum" in p:
- params[k]["enum"] = p["enum"]
-
- desc = self.meta["description"]
- if hasattr(self, "description"):
- desc = self.description
-
- function_name = self.meta["name"]
- if hasattr(self, "function_name"):
- function_name = self.function_name
-
- return {
- "type": "function",
- "function": {
- "name": function_name,
- "description": desc,
- "parameters": {
- "type": "object",
- "properties": params,
- "required": [k for k, p in self.meta["parameters"].items() if p["required"]]
- }
- }
- }
-
-
- class ToolBase(ComponentBase):
- def __init__(self, canvas, id, param: ComponentParamBase):
- from agent.canvas import Canvas # Local import to avoid cyclic dependency
- assert isinstance(canvas, Canvas), "canvas must be an instance of Canvas"
- self._canvas = canvas
- self._id = id
- self._param = param
- self._param.check()
-
- def get_meta(self) -> dict[str, Any]:
- return self._param.get_meta()
-
- def invoke(self, **kwargs):
- self.set_output("_created_time", time.perf_counter())
- try:
- res = self._invoke(**kwargs)
- except Exception as e:
- self._param.outputs["_ERROR"] = {"value": str(e)}
- logging.exception(e)
- res = str(e)
- self._param.debug_inputs = []
-
- self.set_output("_elapsed_time", time.perf_counter() - self.output("_created_time"))
- return res
-
- def _retrieve_chunks(self, res_list: list, get_title, get_url, get_content, get_score=None):
- chunks = []
- aggs = []
- for r in res_list:
- content = get_content(r)
- if not content:
- continue
- content = re.sub(r"!?\[[a-z]+\]\(data:image/png;base64,[ 0-9A-Za-z/_=+-]+\)", "", content)
- content = content[:10000]
- if not content:
- continue
- id = str(hash_str2int(content))
- title = get_title(r)
- url = get_url(r)
- score = get_score(r) if get_score else 1
- chunks.append({
- "chunk_id": id,
- "content": content,
- "doc_id": id,
- "docnm_kwd": title,
- "similarity": score,
- "url": url
- })
- aggs.append({
- "doc_name": title,
- "doc_id": id,
- "count": 1,
- "url": url
- })
- self._canvas.add_refernce(chunks, aggs)
- self.set_output("formalized_content", "\n".join(kb_prompt({"chunks": chunks, "doc_aggs": aggs}, 200000, True)))
-
- def thoughts(self) -> str:
- return self._canvas.get_component_name(self._id) + " is running..."
|