| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import json
- import logging
- import os
- import re
- from typing import Any, Generator
- import json_repair
- from functools import partial
- from api.db import LLMType
- from api.db.services.llm_service import LLMBundle
- from api.db.services.tenant_llm_service import TenantLLMService
- from agent.component.base import ComponentBase, ComponentParamBase
- from api.utils.api_utils import timeout
- from rag.prompts import message_fit_in, citation_prompt
- from rag.prompts.prompts import tool_call_summary
-
-
- class LLMParam(ComponentParamBase):
- """
- Define the LLM component parameters.
- """
-
- def __init__(self):
- super().__init__()
- self.llm_id = ""
- self.sys_prompt = ""
- self.prompts = [{"role": "user", "content": "{sys.query}"}]
- self.max_tokens = 0
- self.temperature = 0
- self.top_p = 0
- self.presence_penalty = 0
- self.frequency_penalty = 0
- self.output_structure = None
- self.cite = True
- self.visual_files_var = None
-
- def check(self):
- self.check_decimal_float(float(self.temperature), "[Agent] Temperature")
- self.check_decimal_float(float(self.presence_penalty), "[Agent] Presence penalty")
- self.check_decimal_float(float(self.frequency_penalty), "[Agent] Frequency penalty")
- self.check_nonnegative_number(int(self.max_tokens), "[Agent] Max tokens")
- self.check_decimal_float(float(self.top_p), "[Agent] Top P")
- self.check_empty(self.llm_id, "[Agent] LLM")
- self.check_empty(self.sys_prompt, "[Agent] System prompt")
- self.check_empty(self.prompts, "[Agent] User prompt")
-
- def gen_conf(self):
- conf = {}
- def get_attr(nm):
- try:
- return getattr(self, nm)
- except Exception:
- pass
-
- if int(self.max_tokens) > 0 and get_attr("maxTokensEnabled"):
- conf["max_tokens"] = int(self.max_tokens)
- if float(self.temperature) > 0 and get_attr("temperatureEnabled"):
- conf["temperature"] = float(self.temperature)
- if float(self.top_p) > 0 and get_attr("topPEnabled"):
- conf["top_p"] = float(self.top_p)
- if float(self.presence_penalty) > 0 and get_attr("presencePenaltyEnabled"):
- conf["presence_penalty"] = float(self.presence_penalty)
- if float(self.frequency_penalty) > 0 and get_attr("frequencyPenaltyEnabled"):
- conf["frequency_penalty"] = float(self.frequency_penalty)
- return conf
-
-
- class LLM(ComponentBase):
- component_name = "LLM"
-
- def __init__(self, canvas, id, param: ComponentParamBase):
- super().__init__(canvas, id, param)
- self.chat_mdl = LLMBundle(self._canvas.get_tenant_id(), TenantLLMService.llm_id2llm_type(self._param.llm_id),
- self._param.llm_id, max_retries=self._param.max_retries,
- retry_interval=self._param.delay_after_error
- )
- self.imgs = []
-
- def get_input_form(self) -> dict[str, dict]:
- res = {}
- for k, v in self.get_input_elements().items():
- res[k] = {
- "type": "line",
- "name": v["name"]
- }
- return res
-
- def get_input_elements(self) -> dict[str, Any]:
- res = self.get_input_elements_from_text(self._param.sys_prompt)
- for prompt in self._param.prompts:
- d = self.get_input_elements_from_text(prompt["content"])
- res.update(d)
- return res
-
- def set_debug_inputs(self, inputs: dict[str, dict]):
- self._param.debug_inputs = inputs
-
- def add2system_prompt(self, txt):
- self._param.sys_prompt += txt
-
- def _prepare_prompt_variables(self):
- if self._param.visual_files_var:
- self.imgs = self._canvas.get_variable_value(self._param.visual_files_var)
- if not self.imgs:
- self.imgs = []
- self.imgs = [img for img in self.imgs if img[:len("data:image/")] == "data:image/"]
- if self.imgs and TenantLLMService.llm_id2llm_type(self._param.llm_id) == LLMType.CHAT.value:
- self.chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.IMAGE2TEXT.value,
- self._param.llm_id, max_retries=self._param.max_retries,
- retry_interval=self._param.delay_after_error
- )
-
-
- args = {}
- vars = self.get_input_elements() if not self._param.debug_inputs else self._param.debug_inputs
- sys_prompt = self._param.sys_prompt
- for k, o in vars.items():
- args[k] = o["value"]
- if not isinstance(args[k], str):
- try:
- args[k] = json.dumps(args[k], ensure_ascii=False)
- except Exception:
- args[k] = str(args[k])
- self.set_input_value(k, args[k])
-
- msg = self._canvas.get_history(self._param.message_history_window_size)[:-1]
- for p in self._param.prompts:
- if msg and msg[-1]["role"] == p["role"]:
- continue
- msg.append(p)
-
- sys_prompt = self.string_format(sys_prompt, args)
- for m in msg:
- m["content"] = self.string_format(m["content"], args)
- if self._param.cite and self._canvas.get_reference()["chunks"]:
- sys_prompt += citation_prompt()
-
- return sys_prompt, msg
-
- def _generate(self, msg:list[dict], **kwargs) -> str:
- if not self.imgs:
- return self.chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf(), **kwargs)
- return self.chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf(), images=self.imgs, **kwargs)
-
- def _generate_streamly(self, msg:list[dict], **kwargs) -> Generator[str, None, None]:
- ans = ""
- last_idx = 0
- endswith_think = False
- def delta(txt):
- nonlocal ans, last_idx, endswith_think
- delta_ans = txt[last_idx:]
- ans = txt
-
- if delta_ans.find("<think>") == 0:
- last_idx += len("<think>")
- return "<think>"
- elif delta_ans.find("<think>") > 0:
- delta_ans = txt[last_idx:last_idx+delta_ans.find("<think>")]
- last_idx += delta_ans.find("<think>")
- return delta_ans
- elif delta_ans.endswith("</think>"):
- endswith_think = True
- elif endswith_think:
- endswith_think = False
- return "</think>"
-
- last_idx = len(ans)
- if ans.endswith("</think>"):
- last_idx -= len("</think>")
- return re.sub(r"(<think>|</think>)", "", delta_ans)
-
- if not self.imgs:
- for txt in self.chat_mdl.chat_streamly(msg[0]["content"], msg[1:], self._param.gen_conf(), **kwargs):
- yield delta(txt)
- else:
- for txt in self.chat_mdl.chat_streamly(msg[0]["content"], msg[1:], self._param.gen_conf(), images=self.imgs, **kwargs):
- yield delta(txt)
-
- @timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
- def _invoke(self, **kwargs):
- def clean_formated_answer(ans: str) -> str:
- ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
- ans = re.sub(r"^.*```json", "", ans, flags=re.DOTALL)
- return re.sub(r"```\n*$", "", ans, flags=re.DOTALL)
-
- prompt, msg = self._prepare_prompt_variables()
- error = ""
-
- if self._param.output_structure:
- prompt += "\nThe output MUST follow this JSON format:\n"+json.dumps(self._param.output_structure, ensure_ascii=False, indent=2)
- prompt += "\nRedundant information is FORBIDDEN."
- for _ in range(self._param.max_retries+1):
- _, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
- error = ""
- ans = self._generate(msg)
- msg.pop(0)
- if ans.find("**ERROR**") >= 0:
- logging.error(f"LLM response error: {ans}")
- error = ans
- continue
- try:
- self.set_output("structured_content", json_repair.loads(clean_formated_answer(ans)))
- return
- except Exception:
- msg.append({"role": "user", "content": "The answer can't not be parsed as JSON"})
- error = "The answer can't not be parsed as JSON"
- if error:
- self.set_output("_ERROR", error)
- return
-
- downstreams = self._canvas.get_component(self._id)["downstream"] if self._canvas.get_component(self._id) else []
- ex = self.exception_handler()
- if any([self._canvas.get_component_obj(cid).component_name.lower()=="message" for cid in downstreams]) and not self._param.output_structure and not (ex and ex["goto"]):
- self.set_output("content", partial(self._stream_output, prompt, msg))
- return
-
- for _ in range(self._param.max_retries+1):
- _, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
- error = ""
- ans = self._generate(msg)
- msg.pop(0)
- if ans.find("**ERROR**") >= 0:
- logging.error(f"LLM response error: {ans}")
- error = ans
- continue
- self.set_output("content", ans)
- break
-
- if error:
- if self.get_exception_default_value():
- self.set_output("content", self.get_exception_default_value())
- else:
- self.set_output("_ERROR", error)
-
- def _stream_output(self, prompt, msg):
- _, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
- answer = ""
- for ans in self._generate_streamly(msg):
- if ans.find("**ERROR**") >= 0:
- if self.get_exception_default_value():
- self.set_output("content", self.get_exception_default_value())
- yield self.get_exception_default_value()
- else:
- self.set_output("_ERROR", ans)
- return
- yield ans
- answer += ans
- self.set_output("content", answer)
-
- def add_memory(self, user:str, assist:str, func_name: str, params: dict, results: str):
- summ = tool_call_summary(self.chat_mdl, func_name, params, results)
- logging.info(f"[MEMORY]: {summ}")
- self._canvas.add_memory(user, assist, summ)
-
- def thoughts(self) -> str:
- _, msg = self._prepare_prompt_variables()
- return "⌛Give me a moment—starting from: \n\n" + re.sub(r"(User's query:|[\\]+)", '', msg[-1]['content'], flags=re.DOTALL) + "\n\nI’ll figure out our best next move."
|