| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import logging
- import itertools
- import re
- from dataclasses import dataclass
- from typing import Any, Callable
-
- import networkx as nx
- import trio
-
- from graphrag.general.extractor import Extractor
- from rag.nlp import is_english
- import editdistance
- from graphrag.entity_resolution_prompt import ENTITY_RESOLUTION_PROMPT
- from rag.llm.chat_model import Base as CompletionLLM
- from graphrag.utils import perform_variable_replacements, chat_limiter, GraphChange
-
- DEFAULT_RECORD_DELIMITER = "##"
- DEFAULT_ENTITY_INDEX_DELIMITER = "<|>"
- DEFAULT_RESOLUTION_RESULT_DELIMITER = "&&"
-
-
- @dataclass
- class EntityResolutionResult:
- """Entity resolution result class definition."""
- graph: nx.Graph
- change: GraphChange
-
-
- class EntityResolution(Extractor):
- """Entity resolution class definition."""
-
- _resolution_prompt: str
- _output_formatter_prompt: str
- _record_delimiter_key: str
- _entity_index_delimiter_key: str
- _resolution_result_delimiter_key: str
-
- def __init__(
- self,
- llm_invoker: CompletionLLM,
- ):
- super().__init__(llm_invoker)
- """Init method definition."""
- self._llm = llm_invoker
- self._resolution_prompt = ENTITY_RESOLUTION_PROMPT
- self._record_delimiter_key = "record_delimiter"
- self._entity_index_dilimiter_key = "entity_index_delimiter"
- self._resolution_result_delimiter_key = "resolution_result_delimiter"
- self._input_text_key = "input_text"
-
- async def __call__(self, graph: nx.Graph,
- subgraph_nodes: set[str],
- prompt_variables: dict[str, Any] | None = None,
- callback: Callable | None = None) -> EntityResolutionResult:
- """Call method definition."""
- if prompt_variables is None:
- prompt_variables = {}
-
- # Wire defaults into the prompt variables
- self.prompt_variables = {
- **prompt_variables,
- self._record_delimiter_key: prompt_variables.get(self._record_delimiter_key)
- or DEFAULT_RECORD_DELIMITER,
- self._entity_index_dilimiter_key: prompt_variables.get(self._entity_index_dilimiter_key)
- or DEFAULT_ENTITY_INDEX_DELIMITER,
- self._resolution_result_delimiter_key: prompt_variables.get(self._resolution_result_delimiter_key)
- or DEFAULT_RESOLUTION_RESULT_DELIMITER,
- }
-
- nodes = sorted(graph.nodes())
- entity_types = sorted(set(graph.nodes[node].get('entity_type', '-') for node in nodes))
- node_clusters = {entity_type: [] for entity_type in entity_types}
-
- for node in nodes:
- node_clusters[graph.nodes[node].get('entity_type', '-')].append(node)
-
- candidate_resolution = {entity_type: [] for entity_type in entity_types}
- for k, v in node_clusters.items():
- candidate_resolution[k] = [(a, b) for a, b in itertools.combinations(v, 2) if (a in subgraph_nodes or b in subgraph_nodes) and self.is_similarity(a, b)]
- num_candidates = sum([len(candidates) for _, candidates in candidate_resolution.items()])
- callback(msg=f"Identified {num_candidates} candidate pairs")
- remain_candidates_to_resolve = num_candidates
-
- resolution_result = set()
- resolution_result_lock = trio.Lock()
- resolution_batch_size = 100
- max_concurrent_tasks = 5
- semaphore = trio.Semaphore(max_concurrent_tasks)
-
- async def limited_resolve_candidate(candidate_batch, result_set, result_lock):
- nonlocal remain_candidates_to_resolve, callback
- async with semaphore:
- try:
- with trio.move_on_after(280) as cancel_scope:
- await self._resolve_candidate(candidate_batch, result_set, result_lock)
- remain_candidates_to_resolve = remain_candidates_to_resolve - len(candidate_batch[1])
- callback(msg=f"Resolved {len(candidate_batch[1])} pairs, {remain_candidates_to_resolve} are remained to resolve. ")
- if cancel_scope.cancelled_caught:
- logging.warning(f"Timeout resolving {candidate_batch}, skipping...")
- remain_candidates_to_resolve = remain_candidates_to_resolve - len(candidate_batch[1])
- callback(msg=f"Fail to resolved {len(candidate_batch[1])} pairs due to timeout reason, skipped. {remain_candidates_to_resolve} are remained to resolve. ")
- except Exception as e:
- logging.error(f"Error resolving candidate batch: {e}")
-
-
- async with trio.open_nursery() as nursery:
- for candidate_resolution_i in candidate_resolution.items():
- if not candidate_resolution_i[1]:
- continue
- for i in range(0, len(candidate_resolution_i[1]), resolution_batch_size):
- candidate_batch = candidate_resolution_i[0], candidate_resolution_i[1][i:i + resolution_batch_size]
- nursery.start_soon(limited_resolve_candidate, candidate_batch, resolution_result, resolution_result_lock)
-
- callback(msg=f"Resolved {num_candidates} candidate pairs, {len(resolution_result)} of them are selected to merge.")
-
- change = GraphChange()
- connect_graph = nx.Graph()
- connect_graph.add_edges_from(resolution_result)
-
- async def limited_merge_nodes(graph, nodes, change):
- async with semaphore:
- await self._merge_graph_nodes(graph, nodes, change)
-
- async with trio.open_nursery() as nursery:
- for sub_connect_graph in nx.connected_components(connect_graph):
- merging_nodes = list(sub_connect_graph)
- nursery.start_soon(limited_merge_nodes, graph, merging_nodes, change)
-
- # Update pagerank
- pr = nx.pagerank(graph)
- for node_name, pagerank in pr.items():
- graph.nodes[node_name]["pagerank"] = pagerank
-
- return EntityResolutionResult(
- graph=graph,
- change=change,
- )
-
- async def _resolve_candidate(self, candidate_resolution_i: tuple[str, list[tuple[str, str]]], resolution_result: set[str], resolution_result_lock: trio.Lock):
- pair_txt = [
- f'When determining whether two {candidate_resolution_i[0]}s are the same, you should only focus on critical properties and overlook noisy factors.\n']
- for index, candidate in enumerate(candidate_resolution_i[1]):
- pair_txt.append(
- f'Question {index + 1}: name of{candidate_resolution_i[0]} A is {candidate[0]} ,name of{candidate_resolution_i[0]} B is {candidate[1]}')
- sent = 'question above' if len(pair_txt) == 1 else f'above {len(pair_txt)} questions'
- pair_txt.append(
- f'\nUse domain knowledge of {candidate_resolution_i[0]}s to help understand the text and answer the {sent} in the format: For Question i, Yes, {candidate_resolution_i[0]} A and {candidate_resolution_i[0]} B are the same {candidate_resolution_i[0]}./No, {candidate_resolution_i[0]} A and {candidate_resolution_i[0]} B are different {candidate_resolution_i[0]}s. For Question i+1, (repeat the above procedures)')
- pair_prompt = '\n'.join(pair_txt)
- variables = {
- **self.prompt_variables,
- self._input_text_key: pair_prompt
- }
- text = perform_variable_replacements(self._resolution_prompt, variables=variables)
- logging.info(f"Created resolution prompt {len(text)} bytes for {len(candidate_resolution_i[1])} entity pairs of type {candidate_resolution_i[0]}")
- async with chat_limiter:
- try:
- with trio.move_on_after(240) as cancel_scope:
- response = await trio.to_thread.run_sync(self._chat, text, [{"role": "user", "content": "Output:"}], {})
- if cancel_scope.cancelled_caught:
- logging.warning("_resolve_candidate._chat timeout, skipping...")
- return
- except Exception as e:
- logging.error(f"_resolve_candidate._chat failed: {e}")
- return
-
- logging.debug(f"_resolve_candidate chat prompt: {text}\nchat response: {response}")
- result = self._process_results(len(candidate_resolution_i[1]), response,
- self.prompt_variables.get(self._record_delimiter_key,
- DEFAULT_RECORD_DELIMITER),
- self.prompt_variables.get(self._entity_index_dilimiter_key,
- DEFAULT_ENTITY_INDEX_DELIMITER),
- self.prompt_variables.get(self._resolution_result_delimiter_key,
- DEFAULT_RESOLUTION_RESULT_DELIMITER))
- async with resolution_result_lock:
- for result_i in result:
- resolution_result.add(candidate_resolution_i[1][result_i[0] - 1])
-
- def _process_results(
- self,
- records_length: int,
- results: str,
- record_delimiter: str,
- entity_index_delimiter: str,
- resolution_result_delimiter: str
- ) -> list:
- ans_list = []
- records = [r.strip() for r in results.split(record_delimiter)]
- for record in records:
- pattern_int = f"{re.escape(entity_index_delimiter)}(\d+){re.escape(entity_index_delimiter)}"
- match_int = re.search(pattern_int, record)
- res_int = int(str(match_int.group(1) if match_int else '0'))
- if res_int > records_length:
- continue
-
- pattern_bool = f"{re.escape(resolution_result_delimiter)}([a-zA-Z]+){re.escape(resolution_result_delimiter)}"
- match_bool = re.search(pattern_bool, record)
- res_bool = str(match_bool.group(1) if match_bool else '')
-
- if res_int and res_bool:
- if res_bool.lower() == 'yes':
- ans_list.append((res_int, "yes"))
-
- return ans_list
-
- def _has_digit_in_2gram_diff(self, a, b):
- def to_2gram_set(s):
- return {s[i:i+2] for i in range(len(s) - 1)}
-
- set_a = to_2gram_set(a)
- set_b = to_2gram_set(b)
- diff = set_a ^ set_b
-
- return any(any(c.isdigit() for c in pair) for pair in diff)
-
- def is_similarity(self, a, b):
- if self._has_digit_in_2gram_diff(a, b):
- return False
-
- if is_english(a) and is_english(b):
- if editdistance.eval(a, b) <= min(len(a), len(b)) // 2:
- return True
- return False
-
- a, b = set(a), set(b)
- max_l = max(len(a), len(b))
- if max_l < 4:
- return len(a & b) > 1
-
- return len(a & b)*1./max_l >= 0.8
|