| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285 |
- #
- # Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
-
- import logging
- import copy
- import re
-
- from api.db import ParserType
- from io import BytesIO
- from rag.nlp import rag_tokenizer, tokenize, tokenize_table, bullets_category, title_frequency, tokenize_chunks, docx_question_level
- from rag.utils import num_tokens_from_string
- from deepdoc.parser import PdfParser, PlainParser, DocxParser
- from docx import Document
- from PIL import Image
-
-
- class Pdf(PdfParser):
- def __init__(self):
- self.model_speciess = ParserType.MANUAL.value
- super().__init__()
-
- def __call__(self, filename, binary=None, from_page=0,
- to_page=100000, zoomin=3, callback=None):
- from timeit import default_timer as timer
- start = timer()
- callback(msg="OCR started")
- self.__images__(
- filename if not binary else binary,
- zoomin,
- from_page,
- to_page,
- callback
- )
- callback(msg="OCR finished ({:.2f}s)".format(timer() - start))
- logging.debug("OCR: {}".format(timer() - start))
-
- start = timer()
- self._layouts_rec(zoomin)
- callback(0.65, "Layout analysis ({:.2f}s)".format(timer() - start))
- logging.debug("layouts: {}".format(timer() - start))
-
- start = timer()
- self._table_transformer_job(zoomin)
- callback(0.67, "Table analysis ({:.2f}s)".format(timer() - start))
-
- start = timer()
- self._text_merge()
- tbls = self._extract_table_figure(True, zoomin, True, True)
- self._concat_downward()
- self._filter_forpages()
- callback(0.68, "Text merged ({:.2f}s)".format(timer() - start))
-
- # clean mess
- for b in self.boxes:
- b["text"] = re.sub(r"([\t ]|\u3000){2,}", " ", b["text"].strip())
-
- return [(b["text"], b.get("layoutno", ""), self.get_position(b, zoomin))
- for i, b in enumerate(self.boxes)], tbls
-
-
- class Docx(DocxParser):
- def __init__(self):
- pass
-
- def get_picture(self, document, paragraph):
- img = paragraph._element.xpath('.//pic:pic')
- if not img:
- return None
- img = img[0]
- embed = img.xpath('.//a:blip/@r:embed')[0]
- related_part = document.part.related_parts[embed]
- image = related_part.image
- image = Image.open(BytesIO(image.blob))
- return image
-
- def concat_img(self, img1, img2):
- if img1 and not img2:
- return img1
- if not img1 and img2:
- return img2
- if not img1 and not img2:
- return None
- width1, height1 = img1.size
- width2, height2 = img2.size
-
- new_width = max(width1, width2)
- new_height = height1 + height2
- new_image = Image.new('RGB', (new_width, new_height))
-
- new_image.paste(img1, (0, 0))
- new_image.paste(img2, (0, height1))
-
- return new_image
-
- def __call__(self, filename, binary=None, from_page=0, to_page=100000, callback=None):
- self.doc = Document(
- filename) if not binary else Document(BytesIO(binary))
- pn = 0
- last_answer, last_image = "", None
- question_stack, level_stack = [], []
- ti_list = []
- for p in self.doc.paragraphs:
- if pn > to_page:
- break
- question_level, p_text = 0, ''
- if from_page <= pn < to_page and p.text.strip():
- question_level, p_text = docx_question_level(p)
- if not question_level or question_level > 6: # not a question
- last_answer = f'{last_answer}\n{p_text}'
- current_image = self.get_picture(self.doc, p)
- last_image = self.concat_img(last_image, current_image)
- else: # is a question
- if last_answer or last_image:
- sum_question = '\n'.join(question_stack)
- if sum_question:
- ti_list.append((f'{sum_question}\n{last_answer}', last_image))
- last_answer, last_image = '', None
-
- i = question_level
- while question_stack and i <= level_stack[-1]:
- question_stack.pop()
- level_stack.pop()
- question_stack.append(p_text)
- level_stack.append(question_level)
- for run in p.runs:
- if 'lastRenderedPageBreak' in run._element.xml:
- pn += 1
- continue
- if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
- pn += 1
- if last_answer:
- sum_question = '\n'.join(question_stack)
- if sum_question:
- ti_list.append((f'{sum_question}\n{last_answer}', last_image))
-
- tbls = []
- for tb in self.doc.tables:
- html= "<table>"
- for r in tb.rows:
- html += "<tr>"
- i = 0
- while i < len(r.cells):
- span = 1
- c = r.cells[i]
- for j in range(i+1, len(r.cells)):
- if c.text == r.cells[j].text:
- span += 1
- i = j
- else:
- break
- i += 1
- html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>"
- html += "</tr>"
- html += "</table>"
- tbls.append(((None, html), ""))
- return ti_list, tbls
-
-
- def chunk(filename, binary=None, from_page=0, to_page=100000,
- lang="Chinese", callback=None, **kwargs):
- """
- Only pdf is supported.
- """
- parser_config = kwargs.get(
- "parser_config", {
- "chunk_token_num": 512, "delimiter": "\n!?。;!?", "layout_recognize": "DeepDOC"})
- pdf_parser = None
- doc = {
- "docnm_kwd": filename
- }
- doc["title_tks"] = rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
- doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
- # is it English
- eng = lang.lower() == "english" # pdf_parser.is_english
- if re.search(r"\.pdf$", filename, re.IGNORECASE):
- pdf_parser = Pdf()
- if parser_config.get("layout_recognize", "DeepDOC") == "Plain Text":
- pdf_parser = PlainParser()
- sections, tbls = pdf_parser(filename if not binary else binary,
- from_page=from_page, to_page=to_page, callback=callback)
- if sections and len(sections[0]) < 3:
- sections = [(t, lvl, [[0] * 5]) for t, lvl in sections]
- # set pivot using the most frequent type of title,
- # then merge between 2 pivot
- if len(sections) > 0 and len(pdf_parser.outlines) / len(sections) > 0.03:
- max_lvl = max([lvl for _, lvl in pdf_parser.outlines])
- most_level = max(0, max_lvl - 1)
- levels = []
- for txt, _, _ in sections:
- for t, lvl in pdf_parser.outlines:
- tks = set([t[i] + t[i + 1] for i in range(len(t) - 1)])
- tks_ = set([txt[i] + txt[i + 1]
- for i in range(min(len(t), len(txt) - 1))])
- if len(set(tks & tks_)) / max([len(tks), len(tks_), 1]) > 0.8:
- levels.append(lvl)
- break
- else:
- levels.append(max_lvl + 1)
-
- else:
- bull = bullets_category([txt for txt, _, _ in sections])
- most_level, levels = title_frequency(
- bull, [(txt, lvl) for txt, lvl, _ in sections])
-
- assert len(sections) == len(levels)
- sec_ids = []
- sid = 0
- for i, lvl in enumerate(levels):
- if lvl <= most_level and i > 0 and lvl != levels[i - 1]:
- sid += 1
- sec_ids.append(sid)
-
- sections = [(txt, sec_ids[i], poss)
- for i, (txt, _, poss) in enumerate(sections)]
- for (img, rows), poss in tbls:
- if not rows:
- continue
- sections.append((rows if isinstance(rows, str) else rows[0], -1,
- [(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
-
- def tag(pn, left, right, top, bottom):
- if pn + left + right + top + bottom == 0:
- return ""
- return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
- .format(pn, left, right, top, bottom)
-
- chunks = []
- last_sid = -2
- tk_cnt = 0
- for txt, sec_id, poss in sorted(sections, key=lambda x: (
- x[-1][0][0], x[-1][0][3], x[-1][0][1])):
- poss = "\t".join([tag(*pos) for pos in poss])
- if tk_cnt < 32 or (tk_cnt < 1024 and (sec_id == last_sid or sec_id == -1)):
- if chunks:
- chunks[-1] += "\n" + txt + poss
- tk_cnt += num_tokens_from_string(txt)
- continue
- chunks.append(txt + poss)
- tk_cnt = num_tokens_from_string(txt)
- if sec_id > -1:
- last_sid = sec_id
-
- res = tokenize_table(tbls, doc, eng)
- res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
- return res
-
- elif re.search(r"\.docx?$", filename, re.IGNORECASE):
- docx_parser = Docx()
- ti_list, tbls = docx_parser(filename, binary,
- from_page=0, to_page=10000, callback=callback)
- res = tokenize_table(tbls, doc, eng)
- for text, image in ti_list:
- d = copy.deepcopy(doc)
- if image:
- d['image'] = image
- d["doc_type_kwd"] = "image"
- tokenize(d, text, eng)
- res.append(d)
- return res
- else:
- raise NotImplementedError("file type not supported yet(pdf and docx supported)")
-
-
- if __name__ == "__main__":
- import sys
-
-
- def dummy(prog=None, msg=""):
- pass
-
-
- chunk(sys.argv[1], callback=dummy)
|