您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import re
  17. import traceback
  18. from concurrent.futures import ThreadPoolExecutor, ALL_COMPLETED, wait
  19. from threading import Lock
  20. from typing import Tuple
  21. import umap
  22. import numpy as np
  23. from sklearn.mixture import GaussianMixture
  24. from rag.utils import num_tokens_from_string, truncate
  25. class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
  26. def __init__(self, max_cluster, llm_model, embd_model, prompt, max_token=256, threshold=0.1):
  27. self._max_cluster = max_cluster
  28. self._llm_model = llm_model
  29. self._embd_model = embd_model
  30. self._threshold = threshold
  31. self._prompt = prompt
  32. self._max_token = max_token
  33. def _get_optimal_clusters(self, embeddings: np.ndarray, random_state:int):
  34. max_clusters = min(self._max_cluster, len(embeddings))
  35. n_clusters = np.arange(1, max_clusters)
  36. bics = []
  37. for n in n_clusters:
  38. gm = GaussianMixture(n_components=n, random_state=random_state)
  39. gm.fit(embeddings)
  40. bics.append(gm.bic(embeddings))
  41. optimal_clusters = n_clusters[np.argmin(bics)]
  42. return optimal_clusters
  43. def __call__(self, chunks: Tuple[str, np.ndarray], random_state, callback=None):
  44. layers = [(0, len(chunks))]
  45. start, end = 0, len(chunks)
  46. if len(chunks) <= 1: return
  47. chunks = [(s, a) for s, a in chunks if len(a) > 0]
  48. def summarize(ck_idx, lock):
  49. nonlocal chunks
  50. try:
  51. texts = [chunks[i][0] for i in ck_idx]
  52. len_per_chunk = int((self._llm_model.max_length - self._max_token)/len(texts))
  53. cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts])
  54. cnt = self._llm_model.chat("You're a helpful assistant.",
  55. [{"role": "user", "content": self._prompt.format(cluster_content=cluster_content)}],
  56. {"temperature": 0.3, "max_tokens": self._max_token}
  57. )
  58. cnt = re.sub("(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)", "", cnt)
  59. print("SUM:", cnt)
  60. embds, _ = self._embd_model.encode([cnt])
  61. with lock:
  62. if not len(embds[0]): return
  63. chunks.append((cnt, embds[0]))
  64. except Exception as e:
  65. print(e, flush=True)
  66. traceback.print_stack(e)
  67. return e
  68. labels = []
  69. while end - start > 1:
  70. embeddings = [embd for _, embd in chunks[start: end]]
  71. if len(embeddings) == 2:
  72. summarize([start, start+1], Lock())
  73. if callback:
  74. callback(msg="Cluster one layer: {} -> {}".format(end-start, len(chunks)-end))
  75. labels.extend([0,0])
  76. layers.append((end, len(chunks)))
  77. start = end
  78. end = len(chunks)
  79. continue
  80. n_neighbors = int((len(embeddings) - 1) ** 0.8)
  81. reduced_embeddings = umap.UMAP(
  82. n_neighbors=max(2, n_neighbors), n_components=min(12, len(embeddings)-2), metric="cosine"
  83. ).fit_transform(embeddings)
  84. n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state)
  85. if n_clusters == 1:
  86. lbls = [0 for _ in range(len(reduced_embeddings))]
  87. else:
  88. gm = GaussianMixture(n_components=n_clusters, random_state=random_state)
  89. gm.fit(reduced_embeddings)
  90. probs = gm.predict_proba(reduced_embeddings)
  91. lbls = [np.where(prob > self._threshold)[0] for prob in probs]
  92. lbls = [lbl[0] if isinstance(lbl, np.ndarray) else lbl for lbl in lbls]
  93. lock = Lock()
  94. with ThreadPoolExecutor(max_workers=12) as executor:
  95. threads = []
  96. for c in range(n_clusters):
  97. ck_idx = [i+start for i in range(len(lbls)) if lbls[i] == c]
  98. threads.append(executor.submit(summarize, ck_idx, lock))
  99. wait(threads, return_when=ALL_COMPLETED)
  100. print([t.result() for t in threads])
  101. assert len(chunks) - end == n_clusters, "{} vs. {}".format(len(chunks) - end, n_clusters)
  102. labels.extend(lbls)
  103. layers.append((end, len(chunks)))
  104. if callback:
  105. callback(msg="Cluster one layer: {} -> {}".format(end-start, len(chunks)-end))
  106. start = end
  107. end = len(chunks)