您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import json
  17. import os
  18. from collections import defaultdict
  19. from api.db import LLMType
  20. from api.db.services.llm_service import LLMBundle
  21. from api.db.services.knowledgebase_service import KnowledgebaseService
  22. from api.settings import retrievaler
  23. from api.utils import get_uuid
  24. from rag.nlp import tokenize, search
  25. from rag.utils.es_conn import ELASTICSEARCH
  26. from ranx import evaluate
  27. import pandas as pd
  28. from tqdm import tqdm
  29. class Benchmark:
  30. def __init__(self, kb_id):
  31. e, kb = KnowledgebaseService.get_by_id(kb_id)
  32. self.similarity_threshold = kb.similarity_threshold
  33. self.vector_similarity_weight = kb.vector_similarity_weight
  34. self.embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id, lang=kb.language)
  35. def _get_benchmarks(self, query, dataset_idxnm, count=16):
  36. req = {"question": query, "size": count, "vector": True, "similarity": self.similarity_threshold}
  37. sres = retrievaler.search(req, search.index_name(dataset_idxnm), self.embd_mdl)
  38. return sres
  39. def _get_retrieval(self, qrels, dataset_idxnm):
  40. run = defaultdict(dict)
  41. query_list = list(qrels.keys())
  42. for query in query_list:
  43. sres = self._get_benchmarks(query, dataset_idxnm)
  44. sim, _, _ = retrievaler.rerank(sres, query, 1 - self.vector_similarity_weight,
  45. self.vector_similarity_weight)
  46. for index, id in enumerate(sres.ids):
  47. run[query][id] = sim[index]
  48. return run
  49. def embedding(self, docs, batch_size=16):
  50. vects = []
  51. cnts = [d["content_with_weight"] for d in docs]
  52. for i in range(0, len(cnts), batch_size):
  53. vts, c = self.embd_mdl.encode(cnts[i: i + batch_size])
  54. vects.extend(vts.tolist())
  55. assert len(docs) == len(vects)
  56. for i, d in enumerate(docs):
  57. v = vects[i]
  58. d["q_%d_vec" % len(v)] = v
  59. return docs
  60. def ms_marco_index(self, file_path, index_name):
  61. qrels = defaultdict(dict)
  62. texts = defaultdict(dict)
  63. docs = []
  64. filelist = os.listdir(file_path)
  65. for dir in filelist:
  66. data = pd.read_parquet(os.path.join(file_path, dir))
  67. for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + dir):
  68. query = data.iloc[i]['query']
  69. for rel, text in zip(data.iloc[i]['passages']['is_selected'], data.iloc[i]['passages']['passage_text']):
  70. d = {
  71. "id": get_uuid()
  72. }
  73. tokenize(d, text, "english")
  74. docs.append(d)
  75. texts[d["id"]] = text
  76. qrels[query][d["id"]] = int(rel)
  77. if len(docs) >= 32:
  78. docs = self.embedding(docs)
  79. ELASTICSEARCH.bulk(docs, search.index_name(index_name))
  80. docs = []
  81. docs = self.embedding(docs)
  82. ELASTICSEARCH.bulk(docs, search.index_name(index_name))
  83. return qrels, texts
  84. def trivia_qa_index(self, file_path, index_name):
  85. qrels = defaultdict(dict)
  86. texts = defaultdict(dict)
  87. docs = []
  88. filelist = os.listdir(file_path)
  89. for dir in filelist:
  90. data = pd.read_parquet(os.path.join(file_path, dir))
  91. for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + dir):
  92. query = data.iloc[i]['question']
  93. for rel, text in zip(data.iloc[i]["search_results"]['rank'],
  94. data.iloc[i]["search_results"]['search_context']):
  95. d = {
  96. "id": get_uuid()
  97. }
  98. tokenize(d, text, "english")
  99. docs.append(d)
  100. texts[d["id"]] = text
  101. qrels[query][d["id"]] = int(rel)
  102. if len(docs) >= 32:
  103. docs = self.embedding(docs)
  104. ELASTICSEARCH.bulk(docs, search.index_name(index_name))
  105. docs = []
  106. docs = self.embedding(docs)
  107. ELASTICSEARCH.bulk(docs, search.index_name(index_name))
  108. return qrels, texts
  109. def miracl_index(self, file_path, corpus_path, index_name):
  110. corpus_total = {}
  111. for corpus_file in os.listdir(corpus_path):
  112. tmp_data = pd.read_json(os.path.join(corpus_path, corpus_file), lines=True)
  113. for index, i in tmp_data.iterrows():
  114. corpus_total[i['docid']] = i['text']
  115. topics_total = {}
  116. for topics_file in os.listdir(os.path.join(file_path, 'topics')):
  117. if 'test' in topics_file:
  118. continue
  119. tmp_data = pd.read_csv(os.path.join(file_path, 'topics', topics_file), sep='\t', names=['qid', 'query'])
  120. for index, i in tmp_data.iterrows():
  121. topics_total[i['qid']] = i['query']
  122. qrels = defaultdict(dict)
  123. texts = defaultdict(dict)
  124. docs = []
  125. for qrels_file in os.listdir(os.path.join(file_path, 'qrels')):
  126. if 'test' in qrels_file:
  127. continue
  128. tmp_data = pd.read_csv(os.path.join(file_path, 'qrels', qrels_file), sep='\t',
  129. names=['qid', 'Q0', 'docid', 'relevance'])
  130. for i in tqdm(range(len(tmp_data)), colour="green", desc="Indexing:" + qrels_file):
  131. query = topics_total[tmp_data.iloc[i]['qid']]
  132. text = corpus_total[tmp_data.iloc[i]['docid']]
  133. rel = tmp_data.iloc[i]['relevance']
  134. d = {
  135. "id": get_uuid()
  136. }
  137. tokenize(d, text, 'english')
  138. docs.append(d)
  139. texts[d["id"]] = text
  140. qrels[query][d["id"]] = int(rel)
  141. if len(docs) >= 32:
  142. docs = self.embedding(docs)
  143. ELASTICSEARCH.bulk(docs, search.index_name(index_name))
  144. docs = []
  145. docs = self.embedding(docs)
  146. ELASTICSEARCH.bulk(docs, search.index_name(index_name))
  147. return qrels, texts
  148. def save_results(self, qrels, run, texts, dataset, file_path):
  149. keep_result = []
  150. run_keys = list(run.keys())
  151. for run_i in tqdm(range(len(run_keys)), desc="Calculating ndcg@10 for single query"):
  152. key = run_keys[run_i]
  153. keep_result.append({'query': key, 'qrel': qrels[key], 'run': run[key],
  154. 'ndcg@10': evaluate({key: qrels[key]}, {key: run[key]}, "ndcg@10")})
  155. keep_result = sorted(keep_result, key=lambda kk: kk['ndcg@10'])
  156. with open(os.path.join(file_path, dataset + 'result.md'), 'w', encoding='utf-8') as f:
  157. f.write('## Score For Every Query\n')
  158. for keep_result_i in keep_result:
  159. f.write('### query: ' + keep_result_i['query'] + ' ndcg@10:' + str(keep_result_i['ndcg@10']) + '\n')
  160. scores = [[i[0], i[1]] for i in keep_result_i['run'].items()]
  161. scores = sorted(scores, key=lambda kk: kk[1])
  162. for score in scores[:10]:
  163. f.write('- text: ' + str(texts[score[0]]) + '\t qrel: ' + str(score[1]) + '\n')
  164. print(os.path.join(file_path, dataset + '_result.md'), 'Saved!')
  165. def __call__(self, dataset, file_path, miracl_corpus=''):
  166. if dataset == "ms_marco_v1.1":
  167. qrels, texts = self.ms_marco_index(file_path, "benchmark_ms_marco_v1.1")
  168. run = self._get_retrieval(qrels, "benchmark_ms_marco_v1.1")
  169. print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
  170. self.save_results(qrels, run, texts, dataset, file_path)
  171. if dataset == "trivia_qa":
  172. qrels, texts = self.trivia_qa_index(file_path, "benchmark_trivia_qa")
  173. run = self._get_retrieval(qrels, "benchmark_trivia_qa")
  174. print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
  175. self.save_results(qrels, run, texts, dataset, file_path)
  176. if dataset == "miracl":
  177. for lang in ['ar', 'bn', 'de', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th',
  178. 'yo', 'zh']:
  179. if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang)):
  180. print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang) + ' not found!')
  181. continue
  182. if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels')):
  183. print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels') + 'not found!')
  184. continue
  185. if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics')):
  186. print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics') + 'not found!')
  187. continue
  188. if not os.path.isdir(os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang)):
  189. print('Directory: ' + os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang) + ' not found!')
  190. continue
  191. qrels, texts = self.miracl_index(os.path.join(file_path, 'miracl-v1.0-' + lang),
  192. os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang),
  193. "benchmark_miracl_" + lang)
  194. run = self._get_retrieval(qrels, "benchmark_miracl_" + lang)
  195. print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
  196. self.save_results(qrels, run, texts, dataset, file_path)
  197. if __name__ == '__main__':
  198. print('*****************RAGFlow Benchmark*****************')
  199. kb_id = input('Please input kb_id:\n')
  200. ex = Benchmark(kb_id)
  201. dataset = input(
  202. 'RAGFlow Benchmark Support:\n\tms_marco_v1.1:<https://huggingface.co/datasets/microsoft/ms_marco>\n\ttrivia_qa:<https://huggingface.co/datasets/mandarjoshi/trivia_qa>\n\tmiracl:<https://huggingface.co/datasets/miracl/miracl>\nPlease input dataset choice:\n')
  203. if dataset in ['ms_marco_v1.1', 'trivia_qa']:
  204. if dataset == "ms_marco_v1.1":
  205. print("Notice: Please provide the ms_marco_v1.1 dataset only. ms_marco_v2.1 is not supported!")
  206. dataset_path = input('Please input ' + dataset + ' dataset path:\n')
  207. ex(dataset, dataset_path)
  208. elif dataset == 'miracl':
  209. dataset_path = input('Please input ' + dataset + ' dataset path:\n')
  210. corpus_path = input('Please input ' + dataset + '-corpus dataset path:\n')
  211. ex(dataset, dataset_path, miracl_corpus=corpus_path)
  212. else:
  213. print("Dataset: ", dataset, "not supported!")