| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- from openai.lib.azure import AzureOpenAI
- from zhipuai import ZhipuAI
- from dashscope import Generation
- from abc import ABC
- from openai import OpenAI
- import openai
- from ollama import Client
- from volcengine.maas.v2 import MaasService
- from rag.nlp import is_english
- from rag.utils import num_tokens_from_string
- from groq import Groq
- import os
- import json
- import requests
- import asyncio
- from rag.svr.jina_server import Prompt,Generation
-
- class Base(ABC):
- def __init__(self, key, model_name, base_url):
- self.client = OpenAI(api_key=key, base_url=base_url)
- self.model_name = model_name
-
- def chat(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- try:
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- **gen_conf)
- ans = response.choices[0].message.content.strip()
- if response.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return ans, response.usage.total_tokens
- except openai.APIError as e:
- return "**ERROR**: " + str(e), 0
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- ans = ""
- total_tokens = 0
- try:
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- stream=True,
- **gen_conf)
- for resp in response:
- if not resp.choices:continue
- if not resp.choices[0].delta.content:
- resp.choices[0].delta.content = ""
- ans += resp.choices[0].delta.content
- total_tokens = (
- (
- total_tokens
- + num_tokens_from_string(resp.choices[0].delta.content)
- )
- if not hasattr(resp, "usage")
- else resp.usage["total_tokens"]
- )
- if resp.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- yield ans
-
- except openai.APIError as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
-
- class GptTurbo(Base):
- def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"):
- if not base_url: base_url="https://api.openai.com/v1"
- super().__init__(key, model_name, base_url)
-
-
- class MoonshotChat(Base):
- def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"):
- if not base_url: base_url="https://api.moonshot.cn/v1"
- super().__init__(key, model_name, base_url)
-
-
- class XinferenceChat(Base):
- def __init__(self, key=None, model_name="", base_url=""):
- if not base_url:
- raise ValueError("Local llm url cannot be None")
- if base_url.split("/")[-1] != "v1":
- self.base_url = os.path.join(base_url, "v1")
- key = "xxx"
- super().__init__(key, model_name, base_url)
-
-
- class DeepSeekChat(Base):
- def __init__(self, key, model_name="deepseek-chat", base_url="https://api.deepseek.com/v1"):
- if not base_url: base_url="https://api.deepseek.com/v1"
- super().__init__(key, model_name, base_url)
-
-
- class AzureChat(Base):
- def __init__(self, key, model_name, **kwargs):
- self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
- self.model_name = model_name
-
-
- class BaiChuanChat(Base):
- def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1"):
- if not base_url:
- base_url = "https://api.baichuan-ai.com/v1"
- super().__init__(key, model_name, base_url)
-
- @staticmethod
- def _format_params(params):
- return {
- "temperature": params.get("temperature", 0.3),
- "max_tokens": params.get("max_tokens", 2048),
- "top_p": params.get("top_p", 0.85),
- }
-
- def chat(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- try:
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- extra_body={
- "tools": [{
- "type": "web_search",
- "web_search": {
- "enable": True,
- "search_mode": "performance_first"
- }
- }]
- },
- **self._format_params(gen_conf))
- ans = response.choices[0].message.content.strip()
- if response.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return ans, response.usage.total_tokens
- except openai.APIError as e:
- return "**ERROR**: " + str(e), 0
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- ans = ""
- total_tokens = 0
- try:
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- extra_body={
- "tools": [{
- "type": "web_search",
- "web_search": {
- "enable": True,
- "search_mode": "performance_first"
- }
- }]
- },
- stream=True,
- **self._format_params(gen_conf))
- for resp in response:
- if resp.choices[0].finish_reason == "stop":
- if not resp.choices[0].delta.content:
- continue
- total_tokens = resp.usage.get('total_tokens', 0)
- if not resp.choices[0].delta.content:
- continue
- ans += resp.choices[0].delta.content
- if resp.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- yield ans
-
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
-
- class QWenChat(Base):
- def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs):
- import dashscope
- dashscope.api_key = key
- self.model_name = model_name
-
- def chat(self, system, history, gen_conf):
- from http import HTTPStatus
- if system:
- history.insert(0, {"role": "system", "content": system})
- response = Generation.call(
- self.model_name,
- messages=history,
- result_format='message',
- **gen_conf
- )
- ans = ""
- tk_count = 0
- if response.status_code == HTTPStatus.OK:
- ans += response.output.choices[0]['message']['content']
- tk_count += response.usage.total_tokens
- if response.output.choices[0].get("finish_reason", "") == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return ans, tk_count
-
- return "**ERROR**: " + response.message, tk_count
-
- def chat_streamly(self, system, history, gen_conf):
- from http import HTTPStatus
- if system:
- history.insert(0, {"role": "system", "content": system})
- ans = ""
- tk_count = 0
- try:
- response = Generation.call(
- self.model_name,
- messages=history,
- result_format='message',
- stream=True,
- **gen_conf
- )
- for resp in response:
- if resp.status_code == HTTPStatus.OK:
- ans = resp.output.choices[0]['message']['content']
- tk_count = resp.usage.total_tokens
- if resp.output.choices[0].get("finish_reason", "") == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- yield ans
- else:
- yield ans + "\n**ERROR**: " + resp.message if str(resp.message).find("Access")<0 else "Out of credit. Please set the API key in **settings > Model providers.**"
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield tk_count
-
-
- class ZhipuChat(Base):
- def __init__(self, key, model_name="glm-3-turbo", **kwargs):
- self.client = ZhipuAI(api_key=key)
- self.model_name = model_name
-
- def chat(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- try:
- if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"]
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- **gen_conf
- )
- ans = response.choices[0].message.content.strip()
- if response.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return ans, response.usage.total_tokens
- except Exception as e:
- return "**ERROR**: " + str(e), 0
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"]
- ans = ""
- tk_count = 0
- try:
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- stream=True,
- **gen_conf
- )
- for resp in response:
- if not resp.choices[0].delta.content:continue
- delta = resp.choices[0].delta.content
- ans += delta
- if resp.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- tk_count = resp.usage.total_tokens
- if resp.choices[0].finish_reason == "stop": tk_count = resp.usage.total_tokens
- yield ans
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield tk_count
-
-
- class OllamaChat(Base):
- def __init__(self, key, model_name, **kwargs):
- self.client = Client(host=kwargs["base_url"])
- self.model_name = model_name
-
- def chat(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- try:
- options = {}
- if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
- if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
- if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"]
- if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
- response = self.client.chat(
- model=self.model_name,
- messages=history,
- options=options,
- keep_alive=-1
- )
- ans = response["message"]["content"].strip()
- return ans, response["eval_count"] + response.get("prompt_eval_count", 0)
- except Exception as e:
- return "**ERROR**: " + str(e), 0
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- options = {}
- if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
- if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
- if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"]
- if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
- ans = ""
- try:
- response = self.client.chat(
- model=self.model_name,
- messages=history,
- stream=True,
- options=options,
- keep_alive=-1
- )
- for resp in response:
- if resp["done"]:
- yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
- ans += resp["message"]["content"]
- yield ans
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
- yield 0
-
-
- class LocalAIChat(Base):
- def __init__(self, key, model_name, base_url):
- if not base_url:
- raise ValueError("Local llm url cannot be None")
- if base_url.split("/")[-1] != "v1":
- self.base_url = os.path.join(base_url, "v1")
- self.client = OpenAI(api_key="empty", base_url=self.base_url)
- self.model_name = model_name.split("___")[0]
-
-
- class LocalLLM(Base):
- class RPCProxy:
- def __init__(self, host, port):
- self.host = host
- self.port = int(port)
- self.__conn()
-
- def __conn(self):
- from multiprocessing.connection import Client
-
- self._connection = Client(
- (self.host, self.port), authkey=b"infiniflow-token4kevinhu"
- )
-
- def __getattr__(self, name):
- import pickle
-
- def do_rpc(*args, **kwargs):
- for _ in range(3):
- try:
- self._connection.send(pickle.dumps((name, args, kwargs)))
- return pickle.loads(self._connection.recv())
- except Exception as e:
- self.__conn()
- raise Exception("RPC connection lost!")
-
- return do_rpc
-
- def __init__(self, key, model_name):
- from jina import Client
-
- self.client = Client(port=12345, protocol="grpc", asyncio=True)
-
- def _prepare_prompt(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- if "max_tokens" in gen_conf:
- gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens")
- return Prompt(message=history, gen_conf=gen_conf)
-
- def _stream_response(self, endpoint, prompt):
- answer = ""
- try:
- res = self.client.stream_doc(
- on=endpoint, inputs=prompt, return_type=Generation
- )
- loop = asyncio.get_event_loop()
- try:
- while True:
- answer = loop.run_until_complete(res.__anext__()).text
- yield answer
- except StopAsyncIteration:
- pass
- except Exception as e:
- yield answer + "\n**ERROR**: " + str(e)
- yield num_tokens_from_string(answer)
-
- def chat(self, system, history, gen_conf):
- prompt = self._prepare_prompt(system, history, gen_conf)
- chat_gen = self._stream_response("/chat", prompt)
- ans = next(chat_gen)
- total_tokens = next(chat_gen)
- return ans, total_tokens
-
- def chat_streamly(self, system, history, gen_conf):
- prompt = self._prepare_prompt(system, history, gen_conf)
- return self._stream_response("/stream", prompt)
-
-
- class VolcEngineChat(Base):
- def __init__(self, key, model_name, base_url):
- """
- Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special,
- Assemble ak, sk, ep_id into api_key, store it as a dictionary type, and parse it for use
- model_name is for display only
- """
- self.client = MaasService('maas-api.ml-platform-cn-beijing.volces.com', 'cn-beijing')
- self.volc_ak = eval(key).get('volc_ak', '')
- self.volc_sk = eval(key).get('volc_sk', '')
- self.client.set_ak(self.volc_ak)
- self.client.set_sk(self.volc_sk)
- self.model_name = eval(key).get('ep_id', '')
-
- def chat(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- try:
- req = {
- "parameters": {
- "min_new_tokens": gen_conf.get("min_new_tokens", 1),
- "top_k": gen_conf.get("top_k", 0),
- "max_prompt_tokens": gen_conf.get("max_prompt_tokens", 30000),
- "temperature": gen_conf.get("temperature", 0.1),
- "max_new_tokens": gen_conf.get("max_tokens", 1000),
- "top_p": gen_conf.get("top_p", 0.3),
- },
- "messages": history
- }
- response = self.client.chat(self.model_name, req)
- ans = response.choices[0].message.content.strip()
- if response.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return ans, response.usage.total_tokens
- except Exception as e:
- return "**ERROR**: " + str(e), 0
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- ans = ""
- tk_count = 0
- try:
- req = {
- "parameters": {
- "min_new_tokens": gen_conf.get("min_new_tokens", 1),
- "top_k": gen_conf.get("top_k", 0),
- "max_prompt_tokens": gen_conf.get("max_prompt_tokens", 30000),
- "temperature": gen_conf.get("temperature", 0.1),
- "max_new_tokens": gen_conf.get("max_tokens", 1000),
- "top_p": gen_conf.get("top_p", 0.3),
- },
- "messages": history
- }
- stream = self.client.stream_chat(self.model_name, req)
- for resp in stream:
- if not resp.choices[0].message.content:
- continue
- ans += resp.choices[0].message.content
- if resp.choices[0].finish_reason == "stop":
- tk_count = resp.usage.total_tokens
- yield ans
-
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
- yield tk_count
-
-
- class MiniMaxChat(Base):
- def __init__(
- self,
- key,
- model_name,
- base_url="https://api.minimax.chat/v1/text/chatcompletion_v2",
- ):
- if not base_url:
- base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2"
- self.base_url = base_url
- self.model_name = model_name
- self.api_key = key
-
- def chat(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_tokens"]:
- del gen_conf[k]
- headers = {
- "Authorization": f"Bearer {self.api_key}",
- "Content-Type": "application/json",
- }
- payload = json.dumps(
- {"model": self.model_name, "messages": history, **gen_conf}
- )
- try:
- response = requests.request(
- "POST", url=self.base_url, headers=headers, data=payload
- )
- response = response.json()
- ans = response["choices"][0]["message"]["content"].strip()
- if response["choices"][0]["finish_reason"] == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return ans, response["usage"]["total_tokens"]
- except Exception as e:
- return "**ERROR**: " + str(e), 0
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- ans = ""
- total_tokens = 0
- try:
- headers = {
- "Authorization": f"Bearer {self.api_key}",
- "Content-Type": "application/json",
- }
- payload = json.dumps(
- {
- "model": self.model_name,
- "messages": history,
- "stream": True,
- **gen_conf,
- }
- )
- response = requests.request(
- "POST",
- url=self.base_url,
- headers=headers,
- data=payload,
- )
- for resp in response.text.split("\n\n")[:-1]:
- resp = json.loads(resp[6:])
- text = ""
- if "choices" in resp and "delta" in resp["choices"][0]:
- text = resp["choices"][0]["delta"]["content"]
- ans += text
- total_tokens = (
- total_tokens + num_tokens_from_string(text)
- if "usage" not in resp
- else resp["usage"]["total_tokens"]
- )
- yield ans
-
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
-
- class MistralChat(Base):
-
- def __init__(self, key, model_name, base_url=None):
- from mistralai.client import MistralClient
- self.client = MistralClient(api_key=key)
- self.model_name = model_name
-
- def chat(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_tokens"]:
- del gen_conf[k]
- try:
- response = self.client.chat(
- model=self.model_name,
- messages=history,
- **gen_conf)
- ans = response.choices[0].message.content
- if response.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return ans, response.usage.total_tokens
- except openai.APIError as e:
- return "**ERROR**: " + str(e), 0
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_tokens"]:
- del gen_conf[k]
- ans = ""
- total_tokens = 0
- try:
- response = self.client.chat_stream(
- model=self.model_name,
- messages=history,
- **gen_conf)
- for resp in response:
- if not resp.choices or not resp.choices[0].delta.content:continue
- ans += resp.choices[0].delta.content
- total_tokens += 1
- if resp.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- yield ans
-
- except openai.APIError as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
-
- class BedrockChat(Base):
-
- def __init__(self, key, model_name, **kwargs):
- import boto3
- self.bedrock_ak = eval(key).get('bedrock_ak', '')
- self.bedrock_sk = eval(key).get('bedrock_sk', '')
- self.bedrock_region = eval(key).get('bedrock_region', '')
- self.model_name = model_name
- self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
- aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
-
- def chat(self, system, history, gen_conf):
- from botocore.exceptions import ClientError
- if system:
- history.insert(0, {"role": "system", "content": system})
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_tokens"]:
- del gen_conf[k]
- if "max_tokens" in gen_conf:
- gen_conf["maxTokens"] = gen_conf["max_tokens"]
- _ = gen_conf.pop("max_tokens")
- if "top_p" in gen_conf:
- gen_conf["topP"] = gen_conf["top_p"]
- _ = gen_conf.pop("top_p")
-
- try:
- # Send the message to the model, using a basic inference configuration.
- response = self.client.converse(
- modelId=self.model_name,
- messages=history,
- inferenceConfig=gen_conf
- )
-
- # Extract and print the response text.
- ans = response["output"]["message"]["content"][0]["text"]
- return ans, num_tokens_from_string(ans)
-
- except (ClientError, Exception) as e:
- return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
-
- def chat_streamly(self, system, history, gen_conf):
- from botocore.exceptions import ClientError
- if system:
- history.insert(0, {"role": "system", "content": system})
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_tokens"]:
- del gen_conf[k]
- if "max_tokens" in gen_conf:
- gen_conf["maxTokens"] = gen_conf["max_tokens"]
- _ = gen_conf.pop("max_tokens")
- if "top_p" in gen_conf:
- gen_conf["topP"] = gen_conf["top_p"]
- _ = gen_conf.pop("top_p")
-
- if self.model_name.split('.')[0] == 'ai21':
- try:
- response = self.client.converse(
- modelId=self.model_name,
- messages=history,
- inferenceConfig=gen_conf
- )
- ans = response["output"]["message"]["content"][0]["text"]
- return ans, num_tokens_from_string(ans)
-
- except (ClientError, Exception) as e:
- return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
-
- ans = ""
- try:
- # Send the message to the model, using a basic inference configuration.
- streaming_response = self.client.converse_stream(
- modelId=self.model_name,
- messages=history,
- inferenceConfig=gen_conf
- )
-
- # Extract and print the streamed response text in real-time.
- for resp in streaming_response["stream"]:
- if "contentBlockDelta" in resp:
- ans += resp["contentBlockDelta"]["delta"]["text"]
- yield ans
-
- except (ClientError, Exception) as e:
- yield ans + f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}"
-
- yield num_tokens_from_string(ans)
-
- class GeminiChat(Base):
-
- def __init__(self, key, model_name,base_url=None):
- from google.generativeai import client,GenerativeModel
-
- client.configure(api_key=key)
- _client = client.get_default_generative_client()
- self.model_name = 'models/' + model_name
- self.model = GenerativeModel(model_name=self.model_name)
- self.model._client = _client
-
- def chat(self,system,history,gen_conf):
- if system:
- history.insert(0, {"role": "user", "parts": system})
- if 'max_tokens' in gen_conf:
- gen_conf['max_output_tokens'] = gen_conf['max_tokens']
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_output_tokens"]:
- del gen_conf[k]
- for item in history:
- if 'role' in item and item['role'] == 'assistant':
- item['role'] = 'model'
- if 'content' in item :
- item['parts'] = item.pop('content')
-
- try:
- response = self.model.generate_content(
- history,
- generation_config=gen_conf)
- ans = response.text
- return ans, response.usage_metadata.total_token_count
- except Exception as e:
- return "**ERROR**: " + str(e), 0
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "user", "parts": system})
- if 'max_tokens' in gen_conf:
- gen_conf['max_output_tokens'] = gen_conf['max_tokens']
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_output_tokens"]:
- del gen_conf[k]
- for item in history:
- if 'role' in item and item['role'] == 'assistant':
- item['role'] = 'model'
- if 'content' in item :
- item['parts'] = item.pop('content')
- ans = ""
- try:
- response = self.model.generate_content(
- history,
- generation_config=gen_conf,stream=True)
- for resp in response:
- ans += resp.text
- yield ans
-
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield response._chunks[-1].usage_metadata.total_token_count
-
-
- class GroqChat:
- def __init__(self, key, model_name,base_url=''):
- self.client = Groq(api_key=key)
- self.model_name = model_name
-
- def chat(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_tokens"]:
- del gen_conf[k]
- ans = ""
- try:
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- **gen_conf
- )
- ans = response.choices[0].message.content
- if response.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return ans, response.usage.total_tokens
- except Exception as e:
- return ans + "\n**ERROR**: " + str(e), 0
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_tokens"]:
- del gen_conf[k]
- ans = ""
- total_tokens = 0
- try:
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- stream=True,
- **gen_conf
- )
- for resp in response:
- if not resp.choices or not resp.choices[0].delta.content:
- continue
- ans += resp.choices[0].delta.content
- total_tokens += 1
- if resp.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- yield ans
-
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
-
- ## openrouter
- class OpenRouterChat(Base):
- def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1"):
- if not base_url:
- base_url = "https://openrouter.ai/api/v1"
- super().__init__(key, model_name, base_url)
-
-
- class StepFunChat(Base):
- def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1"):
- if not base_url:
- base_url = "https://api.stepfun.com/v1"
- super().__init__(key, model_name, base_url)
-
-
- class NvidiaChat(Base):
- def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1"):
- if not base_url:
- base_url = "https://integrate.api.nvidia.com/v1"
- super().__init__(key, model_name, base_url)
-
-
- class LmStudioChat(Base):
- def __init__(self, key, model_name, base_url):
- if not base_url:
- raise ValueError("Local llm url cannot be None")
- if base_url.split("/")[-1] != "v1":
- self.base_url = os.path.join(base_url, "v1")
- self.client = OpenAI(api_key="lm-studio", base_url=self.base_url)
- self.model_name = model_name
|