| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 | 
							- import copy
 - import re
 - 
 - from api.db import ParserType
 - from rag.nlp import huqie, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks
 - from deepdoc.parser import PdfParser, PlainParser
 - from rag.utils import num_tokens_from_string
 - 
 - 
 - class Pdf(PdfParser):
 -     def __init__(self):
 -         self.model_speciess = ParserType.MANUAL.value
 -         super().__init__()
 - 
 -     def __call__(self, filename, binary=None, from_page=0,
 -                  to_page=100000, zoomin=3, callback=None):
 -         from timeit import default_timer as timer
 -         start = timer()
 -         callback(msg="OCR is  running...")
 -         self.__images__(
 -             filename if not binary else binary,
 -             zoomin,
 -             from_page,
 -             to_page,
 -             callback
 -         )
 -         callback(msg="OCR finished.")
 -         # for bb in self.boxes:
 -         #    for b in bb:
 -         #        print(b)
 -         print("OCR:", timer() - start)
 - 
 -         self._layouts_rec(zoomin)
 -         callback(0.65, "Layout analysis finished.")
 -         print("paddle layouts:", timer() - start)
 -         self._table_transformer_job(zoomin)
 -         callback(0.67, "Table analysis finished.")
 -         self._text_merge()
 -         tbls = self._extract_table_figure(True, zoomin, True, True)
 -         self._concat_downward()
 -         self._filter_forpages()
 -         callback(0.68, "Text merging finished")
 - 
 -         # clean mess
 -         for b in self.boxes:
 -             b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip())
 - 
 -         return [(b["text"], b.get("layout_no", ""), self.get_position(b, zoomin))
 -                 for i, b in enumerate(self.boxes)], tbls
 - 
 - 
 - def chunk(filename, binary=None, from_page=0, to_page=100000,
 -           lang="Chinese", callback=None, **kwargs):
 -     """
 -         Only pdf is supported.
 -     """
 -     pdf_parser = None
 - 
 -     if re.search(r"\.pdf$", filename, re.IGNORECASE):
 -         pdf_parser = Pdf() if kwargs.get(
 -             "parser_config", {}).get(
 -             "layout_recognize", True) else PlainParser()
 -         sections, tbls = pdf_parser(filename if not binary else binary,
 -                                     from_page=from_page, to_page=to_page, callback=callback)
 -         if sections and len(sections[0]) < 3:
 -             sections = [(t, l, [[0] * 5]) for t, l in sections]
 - 
 -     else:
 -         raise NotImplementedError("file type not supported yet(pdf supported)")
 -     doc = {
 -         "docnm_kwd": filename
 -     }
 -     doc["title_tks"] = huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
 -     doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
 -     # is it English
 -     eng = lang.lower() == "english"  # pdf_parser.is_english
 - 
 -     # set pivot using the most frequent type of title,
 -     # then merge between 2 pivot
 -     if len(sections) > 0 and len(pdf_parser.outlines) / len(sections) > 0.1:
 -         max_lvl = max([lvl for _, lvl in pdf_parser.outlines])
 -         most_level = max(0, max_lvl - 1)
 -         levels = []
 -         for txt, _, _ in sections:
 -             for t, lvl in pdf_parser.outlines:
 -                 tks = set([t[i] + t[i + 1] for i in range(len(t) - 1)])
 -                 tks_ = set([txt[i] + txt[i + 1]
 -                             for i in range(min(len(t), len(txt) - 1))])
 -                 if len(set(tks & tks_)) / max([len(tks), len(tks_), 1]) > 0.8:
 -                     levels.append(lvl)
 -                     break
 -             else:
 -                 levels.append(max_lvl + 1)
 - 
 -     else:
 -         bull = bullets_category([txt for txt, _, _ in sections])
 -         most_level, levels = title_frequency(
 -             bull, [(txt, l) for txt, l, poss in sections])
 - 
 -     assert len(sections) == len(levels)
 -     sec_ids = []
 -     sid = 0
 -     for i, lvl in enumerate(levels):
 -         if lvl <= most_level and i > 0 and lvl != levels[i - 1]:
 -             sid += 1
 -         sec_ids.append(sid)
 -         # print(lvl, self.boxes[i]["text"], most_level, sid)
 - 
 -     sections = [(txt, sec_ids[i], poss)
 -                 for i, (txt, _, poss) in enumerate(sections)]
 -     for (img, rows), poss in tbls:
 -         if not rows: continue
 -         sections.append((rows if isinstance(rows, str) else rows[0], -1,
 -                          [(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
 - 
 -     def tag(pn, left, right, top, bottom):
 -         if pn + left + right + top + bottom == 0:
 -             return ""
 -         return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
 -             .format(pn, left, right, top, bottom)
 - 
 -     chunks = []
 -     last_sid = -2
 -     tk_cnt = 0
 -     for txt, sec_id, poss in sorted(sections, key=lambda x: (
 -             x[-1][0][0], x[-1][0][3], x[-1][0][1])):
 -         poss = "\t".join([tag(*pos) for pos in poss])
 -         if tk_cnt < 32 or (tk_cnt < 1024 and (sec_id == last_sid or sec_id == -1)):
 -             if chunks:
 -                 chunks[-1] += "\n" + txt + poss
 -                 tk_cnt += num_tokens_from_string(txt)
 -                 continue
 -         chunks.append(txt + poss)
 -         tk_cnt = num_tokens_from_string(txt)
 -         if sec_id > -1:
 -             last_sid = sec_id
 - 
 -     res = tokenize_table(tbls, doc, eng)
 -     res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
 -     return res
 - 
 - 
 - if __name__ == "__main__":
 -     import sys
 - 
 - 
 -     def dummy(prog=None, msg=""):
 -         pass
 - 
 - 
 -     chunk(sys.argv[1], callback=dummy)
 
 
  |