Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

search.py 15KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392
  1. # -*- coding: utf-8 -*-
  2. import json
  3. import re
  4. from copy import deepcopy
  5. from elasticsearch_dsl import Q, Search
  6. from typing import List, Optional, Dict, Union
  7. from dataclasses import dataclass
  8. from api.settings import chat_logger
  9. from rag.settings import es_logger
  10. from rag.utils import rmSpace
  11. from rag.nlp import huqie, query
  12. import numpy as np
  13. def index_name(uid): return f"ragflow_{uid}"
  14. class Dealer:
  15. def __init__(self, es):
  16. self.qryr = query.EsQueryer(es)
  17. self.qryr.flds = [
  18. "title_tks^10",
  19. "title_sm_tks^5",
  20. "important_kwd^30",
  21. "important_tks^20",
  22. "content_ltks^2",
  23. "content_sm_ltks"]
  24. self.es = es
  25. @dataclass
  26. class SearchResult:
  27. total: int
  28. ids: List[str]
  29. query_vector: List[float] = None
  30. field: Optional[Dict] = None
  31. highlight: Optional[Dict] = None
  32. aggregation: Union[List, Dict, None] = None
  33. keywords: Optional[List[str]] = None
  34. group_docs: List[List] = None
  35. def _vector(self, txt, emb_mdl, sim=0.8, topk=10):
  36. qv, c = emb_mdl.encode_queries(txt)
  37. return {
  38. "field": "q_%d_vec" % len(qv),
  39. "k": topk,
  40. "similarity": sim,
  41. "num_candidates": topk * 2,
  42. "query_vector": qv
  43. }
  44. def search(self, req, idxnm, emb_mdl=None):
  45. qst = req.get("question", "")
  46. bqry, keywords = self.qryr.question(qst)
  47. if req.get("kb_ids"):
  48. bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
  49. if req.get("doc_ids"):
  50. bqry.filter.append(Q("terms", doc_id=req["doc_ids"]))
  51. if "available_int" in req:
  52. if req["available_int"] == 0:
  53. bqry.filter.append(Q("range", available_int={"lt": 1}))
  54. else:
  55. bqry.filter.append(
  56. Q("bool", must_not=Q("range", available_int={"lt": 1})))
  57. bqry.boost = 0.05
  58. s = Search()
  59. pg = int(req.get("page", 1)) - 1
  60. ps = int(req.get("size", 1000))
  61. topk = int(req.get("topk", 1024))
  62. src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id",
  63. "image_id", "doc_id", "q_512_vec", "q_768_vec", "position_int",
  64. "q_1024_vec", "q_1536_vec", "available_int", "content_with_weight"])
  65. s = s.query(bqry)[pg * ps:(pg + 1) * ps]
  66. s = s.highlight("content_ltks")
  67. s = s.highlight("title_ltks")
  68. if not qst:
  69. if not req.get("sort"):
  70. s = s.sort(
  71. {"create_time": {"order": "desc", "unmapped_type": "date"}},
  72. {"create_timestamp_flt": {
  73. "order": "desc", "unmapped_type": "float"}}
  74. )
  75. else:
  76. s = s.sort(
  77. {"page_num_int": {"order": "asc", "unmapped_type": "float",
  78. "mode": "avg", "numeric_type": "double"}},
  79. {"top_int": {"order": "asc", "unmapped_type": "float",
  80. "mode": "avg", "numeric_type": "double"}},
  81. {"create_time": {"order": "desc", "unmapped_type": "date"}},
  82. {"create_timestamp_flt": {
  83. "order": "desc", "unmapped_type": "float"}}
  84. )
  85. if qst:
  86. s = s.highlight_options(
  87. fragment_size=120,
  88. number_of_fragments=5,
  89. boundary_scanner_locale="zh-CN",
  90. boundary_scanner="SENTENCE",
  91. boundary_chars=",./;:\\!(),。?:!……()——、"
  92. )
  93. s = s.to_dict()
  94. q_vec = []
  95. if req.get("vector"):
  96. assert emb_mdl, "No embedding model selected"
  97. s["knn"] = self._vector(
  98. qst, emb_mdl, req.get(
  99. "similarity", 0.1), topk)
  100. s["knn"]["filter"] = bqry.to_dict()
  101. if "highlight" in s:
  102. del s["highlight"]
  103. q_vec = s["knn"]["query_vector"]
  104. es_logger.info("【Q】: {}".format(json.dumps(s)))
  105. res = self.es.search(deepcopy(s), idxnm=idxnm, timeout="600s", src=src)
  106. es_logger.info("TOTAL: {}".format(self.es.getTotal(res)))
  107. if self.es.getTotal(res) == 0 and "knn" in s:
  108. bqry, _ = self.qryr.question(qst, min_match="10%")
  109. if req.get("kb_ids"):
  110. bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
  111. s["query"] = bqry.to_dict()
  112. s["knn"]["filter"] = bqry.to_dict()
  113. s["knn"]["similarity"] = 0.17
  114. res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
  115. es_logger.info("【Q】: {}".format(json.dumps(s)))
  116. kwds = set([])
  117. for k in keywords:
  118. kwds.add(k)
  119. for kk in huqie.qieqie(k).split(" "):
  120. if len(kk) < 2:
  121. continue
  122. if kk in kwds:
  123. continue
  124. kwds.add(kk)
  125. aggs = self.getAggregation(res, "docnm_kwd")
  126. return self.SearchResult(
  127. total=self.es.getTotal(res),
  128. ids=self.es.getDocIds(res),
  129. query_vector=q_vec,
  130. aggregation=aggs,
  131. highlight=self.getHighlight(res),
  132. field=self.getFields(res, src),
  133. keywords=list(kwds)
  134. )
  135. def getAggregation(self, res, g):
  136. if not "aggregations" in res or "aggs_" + g not in res["aggregations"]:
  137. return
  138. bkts = res["aggregations"]["aggs_" + g]["buckets"]
  139. return [(b["key"], b["doc_count"]) for b in bkts]
  140. def getHighlight(self, res):
  141. def rmspace(line):
  142. eng = set(list("qwertyuioplkjhgfdsazxcvbnm"))
  143. r = []
  144. for t in line.split(" "):
  145. if not t:
  146. continue
  147. if len(r) > 0 and len(
  148. t) > 0 and r[-1][-1] in eng and t[0] in eng:
  149. r.append(" ")
  150. r.append(t)
  151. r = "".join(r)
  152. return r
  153. ans = {}
  154. for d in res["hits"]["hits"]:
  155. hlts = d.get("highlight")
  156. if not hlts:
  157. continue
  158. ans[d["_id"]] = "".join([a for a in list(hlts.items())[0][1]])
  159. return ans
  160. def getFields(self, sres, flds):
  161. res = {}
  162. if not flds:
  163. return {}
  164. for d in self.es.getSource(sres):
  165. m = {n: d.get(n) for n in flds if d.get(n) is not None}
  166. for n, v in m.items():
  167. if isinstance(v, type([])):
  168. m[n] = "\t".join([str(vv) if not isinstance(
  169. vv, list) else "\t".join([str(vvv) for vvv in vv]) for vv in v])
  170. continue
  171. if not isinstance(v, type("")):
  172. m[n] = str(m[n])
  173. if n.find("tks") > 0:
  174. m[n] = rmSpace(m[n])
  175. if m:
  176. res[d["id"]] = m
  177. return res
  178. @staticmethod
  179. def trans2floats(txt):
  180. return [float(t) for t in txt.split("\t")]
  181. def insert_citations(self, answer, chunks, chunk_v,
  182. embd_mdl, tkweight=0.1, vtweight=0.9):
  183. assert len(chunks) == len(chunk_v)
  184. pieces = re.split(r"(```)", answer)
  185. if len(pieces) >= 3:
  186. i = 0
  187. pieces_ = []
  188. while i < len(pieces):
  189. if pieces[i] == "```":
  190. st = i
  191. i += 1
  192. while i < len(pieces) and pieces[i] != "```":
  193. i += 1
  194. if i < len(pieces):
  195. i += 1
  196. pieces_.append("".join(pieces[st: i]) + "\n")
  197. else:
  198. pieces_.extend(
  199. re.split(
  200. r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])",
  201. pieces[i]))
  202. i += 1
  203. pieces = pieces_
  204. else:
  205. pieces = re.split(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", answer)
  206. for i in range(1, len(pieces)):
  207. if re.match(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", pieces[i]):
  208. pieces[i - 1] += pieces[i][0]
  209. pieces[i] = pieces[i][1:]
  210. idx = []
  211. pieces_ = []
  212. for i, t in enumerate(pieces):
  213. if len(t) < 5:
  214. continue
  215. idx.append(i)
  216. pieces_.append(t)
  217. es_logger.info("{} => {}".format(answer, pieces_))
  218. if not pieces_:
  219. return answer
  220. ans_v, _ = embd_mdl.encode(pieces_)
  221. assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
  222. len(ans_v[0]), len(chunk_v[0]))
  223. chunks_tks = [huqie.qie(self.qryr.rmWWW(ck)).split(" ")
  224. for ck in chunks]
  225. cites = {}
  226. for i, a in enumerate(pieces_):
  227. sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i],
  228. chunk_v,
  229. huqie.qie(
  230. self.qryr.rmWWW(pieces_[i])).split(" "),
  231. chunks_tks,
  232. tkweight, vtweight)
  233. mx = np.max(sim) * 0.99
  234. es_logger.info("{} SIM: {}".format(pieces_[i], mx))
  235. if mx < 0.63:
  236. continue
  237. cites[idx[i]] = list(
  238. set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4]
  239. res = ""
  240. seted = set([])
  241. for i, p in enumerate(pieces):
  242. res += p
  243. if i not in idx:
  244. continue
  245. if i not in cites:
  246. continue
  247. for c in cites[i]:
  248. assert int(c) < len(chunk_v)
  249. for c in cites[i]:
  250. if c in seted:
  251. continue
  252. res += f" ##{c}$$"
  253. seted.add(c)
  254. return res, seted
  255. def rerank(self, sres, query, tkweight=0.3,
  256. vtweight=0.7, cfield="content_ltks"):
  257. _, keywords = self.qryr.question(query)
  258. ins_embd = [
  259. Dealer.trans2floats(
  260. sres.field[i].get("q_%d_vec" % len(sres.query_vector), "\t".join(["0"] * len(sres.query_vector)))) for i in sres.ids]
  261. if not ins_embd:
  262. return [], [], []
  263. ins_tw = [sres.field[i][cfield].split(" ")
  264. for i in sres.ids]
  265. sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
  266. ins_embd,
  267. keywords,
  268. ins_tw, tkweight, vtweight)
  269. return sim, tksim, vtsim
  270. def hybrid_similarity(self, ans_embd, ins_embd, ans, inst):
  271. return self.qryr.hybrid_similarity(ans_embd,
  272. ins_embd,
  273. huqie.qie(ans).split(" "),
  274. huqie.qie(inst).split(" "))
  275. def retrieval(self, question, embd_mdl, tenant_id, kb_ids, page, page_size, similarity_threshold=0.2,
  276. vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True):
  277. ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
  278. if not question:
  279. return ranks
  280. req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": page_size,
  281. "question": question, "vector": True, "topk": top,
  282. "similarity": similarity_threshold}
  283. sres = self.search(req, index_name(tenant_id), embd_mdl)
  284. sim, tsim, vsim = self.rerank(
  285. sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
  286. idx = np.argsort(sim * -1)
  287. dim = len(sres.query_vector)
  288. start_idx = (page - 1) * page_size
  289. for i in idx:
  290. if sim[i] < similarity_threshold:
  291. break
  292. ranks["total"] += 1
  293. start_idx -= 1
  294. if start_idx >= 0:
  295. continue
  296. if len(ranks["chunks"]) >= page_size:
  297. if aggs:
  298. continue
  299. break
  300. id = sres.ids[i]
  301. dnm = sres.field[id]["docnm_kwd"]
  302. did = sres.field[id]["doc_id"]
  303. d = {
  304. "chunk_id": id,
  305. "content_ltks": sres.field[id]["content_ltks"],
  306. "content_with_weight": sres.field[id]["content_with_weight"],
  307. "doc_id": sres.field[id]["doc_id"],
  308. "docnm_kwd": dnm,
  309. "kb_id": sres.field[id]["kb_id"],
  310. "important_kwd": sres.field[id].get("important_kwd", []),
  311. "img_id": sres.field[id].get("img_id", ""),
  312. "similarity": sim[i],
  313. "vector_similarity": vsim[i],
  314. "term_similarity": tsim[i],
  315. "vector": self.trans2floats(sres.field[id].get("q_%d_vec" % dim, "\t".join(["0"] * dim))),
  316. "positions": sres.field[id].get("position_int", "").split("\t")
  317. }
  318. if len(d["positions"]) % 5 == 0:
  319. poss = []
  320. for i in range(0, len(d["positions"]), 5):
  321. poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]),
  322. float(d["positions"][i + 3]), float(d["positions"][i + 4])])
  323. d["positions"] = poss
  324. ranks["chunks"].append(d)
  325. if dnm not in ranks["doc_aggs"]:
  326. ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
  327. ranks["doc_aggs"][dnm]["count"] += 1
  328. ranks["doc_aggs"] = [{"doc_name": k,
  329. "doc_id": v["doc_id"],
  330. "count": v["count"]} for k,
  331. v in sorted(ranks["doc_aggs"].items(),
  332. key=lambda x:x[1]["count"] * -1)]
  333. return ranks
  334. def sql_retrieval(self, sql, fetch_size=128, format="json"):
  335. sql = re.sub(r"[ ]+", " ", sql)
  336. sql = sql.replace("%", "")
  337. es_logger.info(f"Get es sql: {sql}")
  338. replaces = []
  339. for r in re.finditer(r" ([a-z_]+_l?tks)( like | ?= ?)'([^']+)'", sql):
  340. fld, v = r.group(1), r.group(3)
  341. match = " MATCH({}, '{}', 'operator=OR;minimum_should_match=30%') ".format(
  342. fld, huqie.qieqie(huqie.qie(v)))
  343. replaces.append(
  344. ("{}{}'{}'".format(
  345. r.group(1),
  346. r.group(2),
  347. r.group(3)),
  348. match))
  349. for p, r in replaces:
  350. sql = sql.replace(p, r, 1)
  351. chat_logger.info(f"To es: {sql}")
  352. try:
  353. tbl = self.es.sql(sql, fetch_size, format)
  354. return tbl
  355. except Exception as e:
  356. chat_logger.error(f"SQL failure: {sql} =>" + str(e))
  357. return {"error": str(e)}