| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884 |
- #
- # Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import asyncio
- import json
- import logging
- import os
- import random
- import re
- import time
- from abc import ABC
- from copy import deepcopy
- from http import HTTPStatus
- from typing import Any, Protocol
- from urllib.parse import urljoin
-
- import json_repair
- import openai
- import requests
- from dashscope import Generation
- from ollama import Client
- from openai import OpenAI
- from openai.lib.azure import AzureOpenAI
- from zhipuai import ZhipuAI
-
- from rag.nlp import is_chinese, is_english
- from rag.utils import num_tokens_from_string
-
- # Error message constants
- ERROR_PREFIX = "**ERROR**"
- ERROR_RATE_LIMIT = "RATE_LIMIT_EXCEEDED"
- ERROR_AUTHENTICATION = "AUTH_ERROR"
- ERROR_INVALID_REQUEST = "INVALID_REQUEST"
- ERROR_SERVER = "SERVER_ERROR"
- ERROR_TIMEOUT = "TIMEOUT"
- ERROR_CONNECTION = "CONNECTION_ERROR"
- ERROR_MODEL = "MODEL_ERROR"
- ERROR_CONTENT_FILTER = "CONTENT_FILTERED"
- ERROR_QUOTA = "QUOTA_EXCEEDED"
- ERROR_MAX_RETRIES = "MAX_RETRIES_EXCEEDED"
- ERROR_GENERIC = "GENERIC_ERROR"
-
- LENGTH_NOTIFICATION_CN = "······\n由于大模型的上下文窗口大小限制,回答已经被大模型截断。"
- LENGTH_NOTIFICATION_EN = "...\nThe answer is truncated by your chosen LLM due to its limitation on context length."
-
-
- class ToolCallSession(Protocol):
- def tool_call(self, name: str, arguments: dict[str, Any]) -> str: ...
-
-
- class Base(ABC):
- tools: list[Any]
- toolcall_sessions: dict[str, ToolCallSession]
-
- def __init__(self, key, model_name, base_url, **kwargs):
- timeout = int(os.environ.get("LM_TIMEOUT_SECONDS", 600))
- self.client = OpenAI(api_key=key, base_url=base_url, timeout=timeout)
- self.model_name = model_name
- # Configure retry parameters
- self.max_retries = kwargs.get("max_retries", int(os.environ.get("LLM_MAX_RETRIES", 5)))
- self.base_delay = kwargs.get("retry_interval", float(os.environ.get("LLM_BASE_DELAY", 2.0)))
- self.max_rounds = kwargs.get("max_rounds", 5)
- self.is_tools = False
- self.tools = []
- self.toolcall_sessions = {}
-
- def _get_delay(self):
- """Calculate retry delay time"""
- return self.base_delay + random.uniform(0, 0.5)
-
- def _classify_error(self, error):
- """Classify error based on error message content"""
- error_str = str(error).lower()
-
- if "rate limit" in error_str or "429" in error_str or "tpm limit" in error_str or "too many requests" in error_str or "requests per minute" in error_str:
- return ERROR_RATE_LIMIT
- elif "auth" in error_str or "key" in error_str or "apikey" in error_str or "401" in error_str or "forbidden" in error_str or "permission" in error_str:
- return ERROR_AUTHENTICATION
- elif "invalid" in error_str or "bad request" in error_str or "400" in error_str or "format" in error_str or "malformed" in error_str or "parameter" in error_str:
- return ERROR_INVALID_REQUEST
- elif "server" in error_str or "502" in error_str or "503" in error_str or "504" in error_str or "500" in error_str or "unavailable" in error_str:
- return ERROR_SERVER
- elif "timeout" in error_str or "timed out" in error_str:
- return ERROR_TIMEOUT
- elif "connect" in error_str or "network" in error_str or "unreachable" in error_str or "dns" in error_str:
- return ERROR_CONNECTION
- elif "quota" in error_str or "capacity" in error_str or "credit" in error_str or "billing" in error_str or "limit" in error_str and "rate" not in error_str:
- return ERROR_QUOTA
- elif "filter" in error_str or "content" in error_str or "policy" in error_str or "blocked" in error_str or "safety" in error_str or "inappropriate" in error_str:
- return ERROR_CONTENT_FILTER
- elif "model" in error_str or "not found" in error_str or "does not exist" in error_str or "not available" in error_str:
- return ERROR_MODEL
- else:
- return ERROR_GENERIC
-
- def _clean_conf(self, gen_conf):
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- return gen_conf
-
- def _chat(self, history, gen_conf):
- response = self.client.chat.completions.create(model=self.model_name, messages=history, **gen_conf)
-
- if any([not response.choices, not response.choices[0].message, not response.choices[0].message.content]):
- return "", 0
- ans = response.choices[0].message.content.strip()
- if response.choices[0].finish_reason == "length":
- if is_chinese(ans):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- return ans, self.total_token_count(response)
-
- def _length_stop(self, ans):
- if is_chinese([ans]):
- return ans + LENGTH_NOTIFICATION_CN
- return ans + LENGTH_NOTIFICATION_EN
-
- def _exceptions(self, e, attempt):
- logging.exception("OpenAI cat_with_tools")
- # Classify the error
- error_code = self._classify_error(e)
-
- # Check if it's a rate limit error or server error and not the last attempt
- should_retry = (error_code == ERROR_RATE_LIMIT or error_code == ERROR_SERVER) and attempt < self.max_retries
-
- if should_retry:
- delay = self._get_delay()
- logging.warning(f"Error: {error_code}. Retrying in {delay:.2f} seconds... (Attempt {attempt + 1}/{self.max_retries})")
- time.sleep(delay)
- else:
- # For non-rate limit errors or the last attempt, return an error message
- if attempt == self.max_retries:
- error_code = ERROR_MAX_RETRIES
- return f"{ERROR_PREFIX}: {error_code} - {str(e)}"
-
- def bind_tools(self, toolcall_session, tools):
- if not (toolcall_session and tools):
- return
- self.is_tools = True
-
- for tool in tools:
- self.toolcall_sessions[tool["function"]["name"]] = toolcall_session
- self.tools.append(tool)
-
- def chat_with_tools(self, system: str, history: list, gen_conf: dict):
- gen_conf = self._clean_conf()
- if system:
- history.insert(0, {"role": "system", "content": system})
-
- ans = ""
- tk_count = 0
- hist = deepcopy(history)
- # Implement exponential backoff retry strategy
- for attempt in range(self.max_retries + 1):
- history = hist
- for _ in range(self.max_rounds * 2):
- try:
- response = self.client.chat.completions.create(model=self.model_name, messages=history, tools=self.tools, **gen_conf)
- tk_count += self.total_token_count(response)
- if any([not response.choices, not response.choices[0].message, not response.choices[0].message.content]):
- raise Exception("500 response structure error.")
-
- if not hasattr(response.choices[0].message, "tool_calls") or not response.choices[0].message.tool_calls:
- if hasattr(response.choices[0].message, "reasoning_content") and response.choices[0].message.reasoning_content:
- ans += "<think>" + response.choices[0].message.reasoning_content + "</think>"
-
- ans += response.choices[0].message.content
- if response.choices[0].finish_reason == "length":
- ans = self._length_stop(ans)
-
- return ans, tk_count
-
- for tool_call in response.choices[0].message.tool_calls:
- name = tool_call.function.name
- try:
- args = json_repair.loads(tool_call.function.arguments)
- tool_response = self.toolcall_sessions[name].tool_call(name, args)
- history.append({"role": "tool", "tool_call_id": tool_call.id, "content": str(tool_response)})
- except Exception as e:
- history.append({"role": "tool", "tool_call_id": tool_call.id, "content": f"Tool call error: \n{tool_call}\nException:\n" + str(e)})
-
- except Exception as e:
- e = self._exceptions(e, attempt)
- if e:
- return e, tk_count
- assert False, "Shouldn't be here."
-
- def chat(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- gen_conf = self._clean_conf(gen_conf)
-
- # Implement exponential backoff retry strategy
- for attempt in range(self.max_retries + 1):
- try:
- return self._chat(history, gen_conf)
- except Exception as e:
- e = self._exceptions(e, attempt)
- if e:
- return e, 0
- assert False, "Shouldn't be here."
-
- def _wrap_toolcall_message(self, stream):
- final_tool_calls = {}
-
- for chunk in stream:
- for tool_call in chunk.choices[0].delta.tool_calls or []:
- index = tool_call.index
-
- if index not in final_tool_calls:
- final_tool_calls[index] = tool_call
-
- final_tool_calls[index].function.arguments += tool_call.function.arguments
-
- return final_tool_calls
-
- def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict):
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
-
- tools = self.tools
- if system:
- history.insert(0, {"role": "system", "content": system})
-
- total_tokens = 0
- hist = deepcopy(history)
- # Implement exponential backoff retry strategy
- for attempt in range(self.max_retries + 1):
- history = hist
- for _ in range(self.max_rounds * 2):
- reasoning_start = False
- try:
- response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, tools=tools, **gen_conf)
- final_tool_calls = {}
- answer = ""
- for resp in response:
- if resp.choices[0].delta.tool_calls:
- for tool_call in resp.choices[0].delta.tool_calls or []:
- index = tool_call.index
-
- if index not in final_tool_calls:
- final_tool_calls[index] = tool_call
- else:
- final_tool_calls[index].function.arguments += tool_call.function.arguments
- continue
-
- if any([not resp.choices, not resp.choices[0].delta, not hasattr(resp.choices[0].delta, "content")]):
- raise Exception("500 response structure error.")
-
- if not resp.choices[0].delta.content:
- resp.choices[0].delta.content = ""
-
- if hasattr(resp.choices[0].delta, "reasoning_content") and resp.choices[0].delta.reasoning_content:
- ans = ""
- if not reasoning_start:
- reasoning_start = True
- ans = "<think>"
- ans += resp.choices[0].delta.reasoning_content + "</think>"
- yield ans
- else:
- reasoning_start = False
- answer += resp.choices[0].delta.content
- yield resp.choices[0].delta.content
-
- tol = self.total_token_count(resp)
- if not tol:
- total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
- else:
- total_tokens += tol
-
- finish_reason = resp.choices[0].finish_reason if hasattr(resp.choices[0], "finish_reason") else ""
- if finish_reason == "length":
- yield self._length_stop("")
-
- if answer:
- yield total_tokens
- return
-
- for tool_call in final_tool_calls.values():
- name = tool_call.function.name
- try:
- args = json_repair.loads(tool_call.function.arguments)
- tool_response = self.toolcall_sessions[name].tool_call(name, args)
- history.append(
- {
- "role": "assistant",
- "tool_calls": [
- {
- "index": tool_call.index,
- "id": tool_call.id,
- "function": {
- "name": tool_call.function.name,
- "arguments": tool_call.function.arguments,
- },
- "type": "function",
- },
- ],
- }
- )
- history.append({"role": "tool", "tool_call_id": tool_call.id, "content": str(tool_response)})
- except Exception as e:
- logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}")
- history.append({"role": "tool", "tool_call_id": tool_call.id, "content": f"Tool call error: \n{tool_call}\nException:\n" + str(e)})
- except Exception as e:
- e = self._exceptions(e, attempt)
- if e:
- yield total_tokens
- return
-
- assert False, "Shouldn't be here."
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- ans = ""
- total_tokens = 0
- reasoning_start = False
- try:
- response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf)
- for resp in response:
- if not resp.choices:
- continue
- if not resp.choices[0].delta.content:
- resp.choices[0].delta.content = ""
- if hasattr(resp.choices[0].delta, "reasoning_content") and resp.choices[0].delta.reasoning_content:
- ans = ""
- if not reasoning_start:
- reasoning_start = True
- ans = "<think>"
- ans += resp.choices[0].delta.reasoning_content + "</think>"
- else:
- reasoning_start = False
- ans = resp.choices[0].delta.content
-
- tol = self.total_token_count(resp)
- if not tol:
- total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
- else:
- total_tokens += tol
-
- if resp.choices[0].finish_reason == "length":
- if is_chinese(ans):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- yield ans
-
- except openai.APIError as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
- def total_token_count(self, resp):
- try:
- return resp.usage.total_tokens
- except Exception:
- pass
- try:
- return resp["usage"]["total_tokens"]
- except Exception:
- pass
- return 0
-
- def _calculate_dynamic_ctx(self, history):
- """Calculate dynamic context window size"""
-
- def count_tokens(text):
- """Calculate token count for text"""
- # Simple calculation: 1 token per ASCII character
- # 2 tokens for non-ASCII characters (Chinese, Japanese, Korean, etc.)
- total = 0
- for char in text:
- if ord(char) < 128: # ASCII characters
- total += 1
- else: # Non-ASCII characters (Chinese, Japanese, Korean, etc.)
- total += 2
- return total
-
- # Calculate total tokens for all messages
- total_tokens = 0
- for message in history:
- content = message.get("content", "")
- # Calculate content tokens
- content_tokens = count_tokens(content)
- # Add role marker token overhead
- role_tokens = 4
- total_tokens += content_tokens + role_tokens
-
- # Apply 1.2x buffer ratio
- total_tokens_with_buffer = int(total_tokens * 1.2)
-
- if total_tokens_with_buffer <= 8192:
- ctx_size = 8192
- else:
- ctx_multiplier = (total_tokens_with_buffer // 8192) + 1
- ctx_size = ctx_multiplier * 8192
-
- return ctx_size
-
-
- class GptTurbo(Base):
- def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1", **kwargs):
- if not base_url:
- base_url = "https://api.openai.com/v1"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class MoonshotChat(Base):
- def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1", **kwargs):
- if not base_url:
- base_url = "https://api.moonshot.cn/v1"
- super().__init__(key, model_name, base_url)
-
-
- class XinferenceChat(Base):
- def __init__(self, key=None, model_name="", base_url="", **kwargs):
- if not base_url:
- raise ValueError("Local llm url cannot be None")
- base_url = urljoin(base_url, "v1")
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class HuggingFaceChat(Base):
- def __init__(self, key=None, model_name="", base_url="", **kwargs):
- if not base_url:
- raise ValueError("Local llm url cannot be None")
- base_url = urljoin(base_url, "v1")
- super().__init__(key, model_name.split("___")[0], base_url, **kwargs)
-
-
- class ModelScopeChat(Base):
- def __init__(self, key=None, model_name="", base_url="", **kwargs):
- if not base_url:
- raise ValueError("Local llm url cannot be None")
- base_url = urljoin(base_url, "v1")
- super().__init__(key, model_name.split("___")[0], base_url, **kwargs)
-
-
- class DeepSeekChat(Base):
- def __init__(self, key, model_name="deepseek-chat", base_url="https://api.deepseek.com/v1", **kwargs):
- if not base_url:
- base_url = "https://api.deepseek.com/v1"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class AzureChat(Base):
- def __init__(self, key, model_name, base_url, **kwargs):
- api_key = json.loads(key).get("api_key", "")
- api_version = json.loads(key).get("api_version", "2024-02-01")
- super().__init__(key, model_name, base_url, **kwargs)
- self.client = AzureOpenAI(api_key=api_key, azure_endpoint=base_url, api_version=api_version)
- self.model_name = model_name
-
-
- class BaiChuanChat(Base):
- def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1", **kwargs):
- if not base_url:
- base_url = "https://api.baichuan-ai.com/v1"
- super().__init__(key, model_name, base_url, **kwargs)
-
- @staticmethod
- def _format_params(params):
- return {
- "temperature": params.get("temperature", 0.3),
- "top_p": params.get("top_p", 0.85),
- }
-
- def _clean_conf(self, gen_conf):
- return {
- "temperature": gen_conf.get("temperature", 0.3),
- "top_p": gen_conf.get("top_p", 0.85),
- }
-
- def _chat(self, history, gen_conf):
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- extra_body={"tools": [{"type": "web_search", "web_search": {"enable": True, "search_mode": "performance_first"}}]},
- **gen_conf,
- )
- ans = response.choices[0].message.content.strip()
- if response.choices[0].finish_reason == "length":
- if is_chinese([ans]):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- return ans, self.total_token_count(response)
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- ans = ""
- total_tokens = 0
- try:
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- extra_body={"tools": [{"type": "web_search", "web_search": {"enable": True, "search_mode": "performance_first"}}]},
- stream=True,
- **self._format_params(gen_conf),
- )
- for resp in response:
- if not resp.choices:
- continue
- if not resp.choices[0].delta.content:
- resp.choices[0].delta.content = ""
- ans = resp.choices[0].delta.content
- tol = self.total_token_count(resp)
- if not tol:
- total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
- else:
- total_tokens = tol
- if resp.choices[0].finish_reason == "length":
- if is_chinese([ans]):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- yield ans
-
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
-
- class QWenChat(Base):
- def __init__(self, key, model_name=Generation.Models.qwen_turbo, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- import dashscope
-
- dashscope.api_key = key
- self.model_name = model_name
- if self.is_reasoning_model(self.model_name) or self.model_name in ["qwen-vl-plus", "qwen-vl-plus-latest", "qwen-vl-max", "qwen-vl-max-latest"]:
- super().__init__(key, model_name, "https://dashscope.aliyuncs.com/compatible-mode/v1", **kwargs)
-
- def chat_with_tools(self, system: str, history: list, gen_conf: dict) -> tuple[str, int]:
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- # if self.is_reasoning_model(self.model_name):
- # return super().chat(system, history, gen_conf)
-
- stream_flag = str(os.environ.get("QWEN_CHAT_BY_STREAM", "true")).lower() == "true"
- if not stream_flag:
- from http import HTTPStatus
-
- tools = self.tools
-
- if system:
- history.insert(0, {"role": "system", "content": system})
-
- response = Generation.call(self.model_name, messages=history, result_format="message", tools=tools, **gen_conf)
- ans = ""
- tk_count = 0
- if response.status_code == HTTPStatus.OK:
- assistant_output = response.output.choices[0].message
- if not ans and "tool_calls" not in assistant_output and "reasoning_content" in assistant_output:
- ans += "<think>" + ans + "</think>"
- ans += response.output.choices[0].message.content
-
- if "tool_calls" not in assistant_output:
- tk_count += self.total_token_count(response)
- if response.output.choices[0].get("finish_reason", "") == "length":
- if is_chinese([ans]):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- return ans, tk_count
-
- tk_count += self.total_token_count(response)
- history.append(assistant_output)
-
- while "tool_calls" in assistant_output:
- tool_info = {"content": "", "role": "tool", "tool_call_id": assistant_output.tool_calls[0]["id"]}
- tool_name = assistant_output.tool_calls[0]["function"]["name"]
- if tool_name:
- arguments = json.loads(assistant_output.tool_calls[0]["function"]["arguments"])
- tool_info["content"] = self.toolcall_sessions[tool_name].tool_call(name=tool_name, arguments=arguments)
- history.append(tool_info)
-
- response = Generation.call(self.model_name, messages=history, result_format="message", tools=self.tools, **gen_conf)
- if response.output.choices[0].get("finish_reason", "") == "length":
- tk_count += self.total_token_count(response)
- if is_chinese([ans]):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- return ans, tk_count
-
- tk_count += self.total_token_count(response)
- assistant_output = response.output.choices[0].message
- if assistant_output.content is None:
- assistant_output.content = ""
- history.append(response)
- ans += assistant_output["content"]
- return ans, tk_count
- else:
- return "**ERROR**: " + response.message, tk_count
- else:
- result_list = []
- for result in self._chat_streamly_with_tools(system, history, gen_conf, incremental_output=True):
- result_list.append(result)
- error_msg_list = [result for result in result_list if str(result).find("**ERROR**") >= 0]
- if len(error_msg_list) > 0:
- return "**ERROR**: " + "".join(error_msg_list), 0
- else:
- return "".join(result_list[:-1]), result_list[-1]
-
- def _chat(self, history, gen_conf):
- if self.is_reasoning_model(self.model_name) or self.model_name in ["qwen-vl-plus", "qwen-vl-plus-latest", "qwen-vl-max", "qwen-vl-max-latest"]:
- return super()._chat(history, gen_conf)
- response = Generation.call(self.model_name, messages=history, result_format="message", **gen_conf)
- ans = ""
- tk_count = 0
- if response.status_code == HTTPStatus.OK:
- ans += response.output.choices[0]["message"]["content"]
- tk_count += self.total_token_count(response)
- if response.output.choices[0].get("finish_reason", "") == "length":
- if is_chinese([ans]):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- return ans, tk_count
- return "**ERROR**: " + response.message, tk_count
-
- def _wrap_toolcall_message(self, old_message, message):
- if not old_message:
- return message
- tool_call_id = message["tool_calls"][0].get("id")
- if tool_call_id:
- old_message.tool_calls[0]["id"] = tool_call_id
- function = message.tool_calls[0]["function"]
- if function:
- if function.get("name"):
- old_message.tool_calls[0]["function"]["name"] = function["name"]
- if function.get("arguments"):
- old_message.tool_calls[0]["function"]["arguments"] += function["arguments"]
- return old_message
-
- def _chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict, incremental_output=True):
- from http import HTTPStatus
-
- if system:
- history.insert(0, {"role": "system", "content": system})
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- ans = ""
- tk_count = 0
- try:
- response = Generation.call(self.model_name, messages=history, result_format="message", tools=self.tools, stream=True, incremental_output=incremental_output, **gen_conf)
- tool_info = {"content": "", "role": "tool"}
- toolcall_message = None
- tool_name = ""
- tool_arguments = ""
- finish_completion = False
- reasoning_start = False
- while not finish_completion:
- for resp in response:
- if resp.status_code == HTTPStatus.OK:
- assistant_output = resp.output.choices[0].message
- ans = resp.output.choices[0].message.content
- if not ans and "tool_calls" not in assistant_output and "reasoning_content" in assistant_output:
- ans = resp.output.choices[0].message.reasoning_content
- if not reasoning_start:
- reasoning_start = True
- ans = "<think>" + ans
- else:
- ans = ans + "</think>"
-
- if "tool_calls" not in assistant_output:
- reasoning_start = False
- tk_count += self.total_token_count(resp)
- if resp.output.choices[0].get("finish_reason", "") == "length":
- if is_chinese([ans]):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- finish_reason = resp.output.choices[0]["finish_reason"]
- if finish_reason == "stop":
- finish_completion = True
- yield ans
- break
- yield ans
- continue
-
- tk_count += self.total_token_count(resp)
- toolcall_message = self._wrap_toolcall_message(toolcall_message, assistant_output)
- if "tool_calls" in assistant_output:
- tool_call_finish_reason = resp.output.choices[0]["finish_reason"]
- if tool_call_finish_reason == "tool_calls":
- try:
- tool_arguments = json.loads(toolcall_message.tool_calls[0]["function"]["arguments"])
- except Exception as e:
- logging.exception(msg="_chat_streamly_with_tool tool call error")
- yield ans + "\n**ERROR**: " + str(e)
- finish_completion = True
- break
-
- tool_name = toolcall_message.tool_calls[0]["function"]["name"]
- history.append(toolcall_message)
- tool_info["content"] = self.toolcall_sessions[tool_name].tool_call(name=tool_name, arguments=tool_arguments)
- history.append(tool_info)
- tool_info = {"content": "", "role": "tool"}
- tool_name = ""
- tool_arguments = ""
- toolcall_message = None
- response = Generation.call(self.model_name, messages=history, result_format="message", tools=self.tools, stream=True, incremental_output=incremental_output, **gen_conf)
- else:
- yield (
- ans + "\n**ERROR**: " + resp.output.choices[0].message
- if not re.search(r" (key|quota)", str(resp.message).lower())
- else "Out of credit. Please set the API key in **settings > Model providers.**"
- )
- except Exception as e:
- logging.exception(msg="_chat_streamly_with_tool")
- yield ans + "\n**ERROR**: " + str(e)
- yield tk_count
-
- def _chat_streamly(self, system, history, gen_conf, incremental_output=True):
- from http import HTTPStatus
-
- if system:
- history.insert(0, {"role": "system", "content": system})
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- ans = ""
- tk_count = 0
- try:
- response = Generation.call(self.model_name, messages=history, result_format="message", stream=True, incremental_output=incremental_output, **gen_conf)
- for resp in response:
- if resp.status_code == HTTPStatus.OK:
- ans = resp.output.choices[0]["message"]["content"]
- tk_count = self.total_token_count(resp)
- if resp.output.choices[0].get("finish_reason", "") == "length":
- if is_chinese(ans):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- yield ans
- else:
- yield (
- ans + "\n**ERROR**: " + resp.message
- if not re.search(r" (key|quota)", str(resp.message).lower())
- else "Out of credit. Please set the API key in **settings > Model providers.**"
- )
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield tk_count
-
- def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict, incremental_output=True):
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
-
- for txt in self._chat_streamly_with_tools(system, history, gen_conf, incremental_output=incremental_output):
- yield txt
-
- def chat_streamly(self, system, history, gen_conf):
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- if self.is_reasoning_model(self.model_name) or self.model_name in ["qwen-vl-plus", "qwen-vl-plus-latest", "qwen-vl-max", "qwen-vl-max-latest"]:
- return super().chat_streamly(system, history, gen_conf)
-
- return self._chat_streamly(system, history, gen_conf)
-
- @staticmethod
- def is_reasoning_model(model_name: str) -> bool:
- return any(
- [
- model_name.lower().find("deepseek") >= 0,
- model_name.lower().find("qwq") >= 0 and model_name.lower() != "qwq-32b-preview",
- ]
- )
-
-
- class ZhipuChat(Base):
- def __init__(self, key, model_name="glm-3-turbo", base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- self.client = ZhipuAI(api_key=key)
- self.model_name = model_name
-
- def _clean_conf(self, gen_conf):
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- if "presence_penalty" in gen_conf:
- del gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf:
- del gen_conf["frequency_penalty"]
- return gen_conf
-
- def chat_with_tools(self, system: str, history: list, gen_conf: dict):
- if "presence_penalty" in gen_conf:
- del gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf:
- del gen_conf["frequency_penalty"]
-
- return super().chat_with_tools(system, history, gen_conf)
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- if "presence_penalty" in gen_conf:
- del gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf:
- del gen_conf["frequency_penalty"]
- ans = ""
- tk_count = 0
- try:
- response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf)
- for resp in response:
- if not resp.choices[0].delta.content:
- continue
- delta = resp.choices[0].delta.content
- ans = delta
- if resp.choices[0].finish_reason == "length":
- if is_chinese(ans):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- tk_count = self.total_token_count(resp)
- if resp.choices[0].finish_reason == "stop":
- tk_count = self.total_token_count(resp)
- yield ans
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield tk_count
-
- def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict):
- if "presence_penalty" in gen_conf:
- del gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf:
- del gen_conf["frequency_penalty"]
-
- return super().chat_streamly_with_tools(system, history, gen_conf)
-
-
- class OllamaChat(Base):
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- self.client = Client(host=base_url) if not key or key == "x" else Client(host=base_url, headers={"Authorization": f"Bearer {key}"})
- self.model_name = model_name
-
- def _clean_conf(self, gen_conf):
- options = {}
- if "max_tokens" in gen_conf:
- options["num_predict"] = gen_conf["max_tokens"]
- for k in ["temperature", "top_p", "presence_penalty", "frequency_penalty"]:
- if k not in gen_conf:
- continue
- options[k] = gen_conf[k]
- return options
-
- def _chat(self, history, gen_conf):
- # Calculate context size
- ctx_size = self._calculate_dynamic_ctx(history)
-
- gen_conf["num_ctx"] = ctx_size
- response = self.client.chat(model=self.model_name, messages=history, options=gen_conf, keep_alive=-1)
- ans = response["message"]["content"].strip()
- token_count = response.get("eval_count", 0) + response.get("prompt_eval_count", 0)
- return ans, token_count
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- try:
- # Calculate context size
- ctx_size = self._calculate_dynamic_ctx(history)
- options = {"num_ctx": ctx_size}
- if "temperature" in gen_conf:
- options["temperature"] = gen_conf["temperature"]
- if "max_tokens" in gen_conf:
- options["num_predict"] = gen_conf["max_tokens"]
- if "top_p" in gen_conf:
- options["top_p"] = gen_conf["top_p"]
- if "presence_penalty" in gen_conf:
- options["presence_penalty"] = gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf:
- options["frequency_penalty"] = gen_conf["frequency_penalty"]
-
- ans = ""
- try:
- response = self.client.chat(model=self.model_name, messages=history, stream=True, options=options, keep_alive=-1)
- for resp in response:
- if resp["done"]:
- token_count = resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
- yield token_count
- ans = resp["message"]["content"]
- yield ans
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
- yield 0
- except Exception as e:
- yield "**ERROR**: " + str(e)
- yield 0
-
-
- class LocalAIChat(Base):
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- if not base_url:
- raise ValueError("Local llm url cannot be None")
- base_url = urljoin(base_url, "v1")
- self.client = OpenAI(api_key="empty", base_url=base_url)
- self.model_name = model_name.split("___")[0]
-
-
- class LocalLLM(Base):
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
- from jina import Client
-
- self.client = Client(port=12345, protocol="grpc", asyncio=True)
-
- def _prepare_prompt(self, system, history, gen_conf):
- from rag.svr.jina_server import Prompt
-
- if system:
- history.insert(0, {"role": "system", "content": system})
- return Prompt(message=history, gen_conf=gen_conf)
-
- def _stream_response(self, endpoint, prompt):
- from rag.svr.jina_server import Generation
-
- answer = ""
- try:
- res = self.client.stream_doc(on=endpoint, inputs=prompt, return_type=Generation)
- loop = asyncio.get_event_loop()
- try:
- while True:
- answer = loop.run_until_complete(res.__anext__()).text
- yield answer
- except StopAsyncIteration:
- pass
- except Exception as e:
- yield answer + "\n**ERROR**: " + str(e)
- yield num_tokens_from_string(answer)
-
- def chat(self, system, history, gen_conf):
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- prompt = self._prepare_prompt(system, history, gen_conf)
- chat_gen = self._stream_response("/chat", prompt)
- ans = next(chat_gen)
- total_tokens = next(chat_gen)
- return ans, total_tokens
-
- def chat_streamly(self, system, history, gen_conf):
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- prompt = self._prepare_prompt(system, history, gen_conf)
- return self._stream_response("/stream", prompt)
-
-
- class VolcEngineChat(Base):
- def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3", **kwargs):
- """
- Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special,
- Assemble ark_api_key, ep_id into api_key, store it as a dictionary type, and parse it for use
- model_name is for display only
- """
- base_url = base_url if base_url else "https://ark.cn-beijing.volces.com/api/v3"
- ark_api_key = json.loads(key).get("ark_api_key", "")
- model_name = json.loads(key).get("ep_id", "") + json.loads(key).get("endpoint_id", "")
- super().__init__(ark_api_key, model_name, base_url, **kwargs)
-
-
- class MiniMaxChat(Base):
- def __init__(self, key, model_name, base_url="https://api.minimax.chat/v1/text/chatcompletion_v2", **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- if not base_url:
- base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2"
- self.base_url = base_url
- self.model_name = model_name
- self.api_key = key
-
- def _clean_conf(self, gen_conf):
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_tokens"]:
- del gen_conf[k]
- return gen_conf
-
- def _chat(self, history, gen_conf):
- headers = {
- "Authorization": f"Bearer {self.api_key}",
- "Content-Type": "application/json",
- }
- payload = json.dumps({"model": self.model_name, "messages": history, **gen_conf})
- response = requests.request("POST", url=self.base_url, headers=headers, data=payload)
- response = response.json()
- ans = response["choices"][0]["message"]["content"].strip()
- if response["choices"][0]["finish_reason"] == "length":
- if is_chinese(ans):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- return ans, self.total_token_count(response)
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_tokens"]:
- del gen_conf[k]
- ans = ""
- total_tokens = 0
- try:
- headers = {
- "Authorization": f"Bearer {self.api_key}",
- "Content-Type": "application/json",
- }
- payload = json.dumps(
- {
- "model": self.model_name,
- "messages": history,
- "stream": True,
- **gen_conf,
- }
- )
- response = requests.request(
- "POST",
- url=self.base_url,
- headers=headers,
- data=payload,
- )
- for resp in response.text.split("\n\n")[:-1]:
- resp = json.loads(resp[6:])
- text = ""
- if "choices" in resp and "delta" in resp["choices"][0]:
- text = resp["choices"][0]["delta"]["content"]
- ans = text
- tol = self.total_token_count(resp)
- if not tol:
- total_tokens += num_tokens_from_string(text)
- else:
- total_tokens = tol
- yield ans
-
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
-
- class MistralChat(Base):
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- from mistralai.client import MistralClient
-
- self.client = MistralClient(api_key=key)
- self.model_name = model_name
-
- def _clean_conf(self, gen_conf):
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_tokens"]:
- del gen_conf[k]
- return gen_conf
-
- def _chat(self, history, gen_conf):
- response = self.client.chat(model=self.model_name, messages=history, **gen_conf)
- ans = response.choices[0].message.content
- if response.choices[0].finish_reason == "length":
- if is_chinese(ans):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- return ans, self.total_token_count(response)
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_tokens"]:
- del gen_conf[k]
- ans = ""
- total_tokens = 0
- try:
- response = self.client.chat_stream(model=self.model_name, messages=history, **gen_conf)
- for resp in response:
- if not resp.choices or not resp.choices[0].delta.content:
- continue
- ans = resp.choices[0].delta.content
- total_tokens += 1
- if resp.choices[0].finish_reason == "length":
- if is_chinese(ans):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- yield ans
-
- except openai.APIError as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
-
- class BedrockChat(Base):
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- import boto3
-
- self.bedrock_ak = json.loads(key).get("bedrock_ak", "")
- self.bedrock_sk = json.loads(key).get("bedrock_sk", "")
- self.bedrock_region = json.loads(key).get("bedrock_region", "")
- self.model_name = model_name
-
- if self.bedrock_ak == "" or self.bedrock_sk == "" or self.bedrock_region == "":
- # Try to create a client using the default credentials (AWS_PROFILE, AWS_DEFAULT_REGION, etc.)
- self.client = boto3.client("bedrock-runtime")
- else:
- self.client = boto3.client(service_name="bedrock-runtime", region_name=self.bedrock_region, aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
-
- def _clean_conf(self, gen_conf):
- for k in list(gen_conf.keys()):
- if k not in ["temperature"]:
- del gen_conf[k]
- return gen_conf
-
- def _chat(self, history, gen_conf):
- system = history[0]["content"] if history and history[0]["role"] == "system" else ""
- hist = []
- for item in history:
- if item["role"] == "system":
- continue
- hist.append(deepcopy(item))
- if not isinstance(hist[-1]["content"], list) and not isinstance(hist[-1]["content"], tuple):
- hist[-1]["content"] = [{"text": hist[-1]["content"]}]
- # Send the message to the model, using a basic inference configuration.
- response = self.client.converse(
- modelId=self.model_name,
- messages=hist,
- inferenceConfig=gen_conf,
- system=[{"text": (system if system else "Answer the user's message.")}],
- )
-
- # Extract and print the response text.
- ans = response["output"]["message"]["content"][0]["text"]
- return ans, num_tokens_from_string(ans)
-
- def chat_streamly(self, system, history, gen_conf):
- from botocore.exceptions import ClientError
-
- for k in list(gen_conf.keys()):
- if k not in ["temperature"]:
- del gen_conf[k]
- for item in history:
- if not isinstance(item["content"], list) and not isinstance(item["content"], tuple):
- item["content"] = [{"text": item["content"]}]
-
- if self.model_name.split(".")[0] == "ai21":
- try:
- response = self.client.converse(modelId=self.model_name, messages=history, inferenceConfig=gen_conf, system=[{"text": (system if system else "Answer the user's message.")}])
- ans = response["output"]["message"]["content"][0]["text"]
- return ans, num_tokens_from_string(ans)
-
- except (ClientError, Exception) as e:
- return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
-
- ans = ""
- try:
- # Send the message to the model, using a basic inference configuration.
- streaming_response = self.client.converse_stream(
- modelId=self.model_name, messages=history, inferenceConfig=gen_conf, system=[{"text": (system if system else "Answer the user's message.")}]
- )
-
- # Extract and print the streamed response text in real-time.
- for resp in streaming_response["stream"]:
- if "contentBlockDelta" in resp:
- ans = resp["contentBlockDelta"]["delta"]["text"]
- yield ans
-
- except (ClientError, Exception) as e:
- yield ans + f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}"
-
- yield num_tokens_from_string(ans)
-
-
- class GeminiChat(Base):
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- from google.generativeai import GenerativeModel, client
-
- client.configure(api_key=key)
- _client = client.get_default_generative_client()
- self.model_name = "models/" + model_name
- self.model = GenerativeModel(model_name=self.model_name)
- self.model._client = _client
-
- def _clean_conf(self, gen_conf):
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p"]:
- del gen_conf[k]
- return gen_conf
-
- def _chat(self, history, gen_conf):
- from google.generativeai.types import content_types
-
- system = history[0]["content"] if history and history[0]["role"] == "system" else ""
- hist = []
- for item in history:
- if item["role"] == "system":
- continue
- hist.append(deepcopy(item))
- item = hist[-1]
- if "role" in item and item["role"] == "assistant":
- item["role"] = "model"
- if "role" in item and item["role"] == "system":
- item["role"] = "user"
- if "content" in item:
- item["parts"] = item.pop("content")
-
- if system:
- self.model._system_instruction = content_types.to_content(system)
- response = self.model.generate_content(hist, generation_config=gen_conf)
- ans = response.text
- return ans, response.usage_metadata.total_token_count
-
- def chat_streamly(self, system, history, gen_conf):
- from google.generativeai.types import content_types
-
- if system:
- self.model._system_instruction = content_types.to_content(system)
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_tokens"]:
- del gen_conf[k]
- for item in history:
- if "role" in item and item["role"] == "assistant":
- item["role"] = "model"
- if "content" in item:
- item["parts"] = item.pop("content")
- ans = ""
- try:
- response = self.model.generate_content(history, generation_config=gen_conf, stream=True)
- for resp in response:
- ans = resp.text
- yield ans
-
- yield response._chunks[-1].usage_metadata.total_token_count
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield 0
-
-
- class GroqChat(Base):
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- from groq import Groq
-
- self.client = Groq(api_key=key)
- self.model_name = model_name
-
- def _clean_conf(self, gen_conf):
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_tokens"]:
- del gen_conf[k]
- return gen_conf
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_tokens"]:
- del gen_conf[k]
- ans = ""
- total_tokens = 0
- try:
- response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf)
- for resp in response:
- if not resp.choices or not resp.choices[0].delta.content:
- continue
- ans = resp.choices[0].delta.content
- total_tokens += 1
- if resp.choices[0].finish_reason == "length":
- if is_chinese(ans):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- yield ans
-
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
-
- ## openrouter
- class OpenRouterChat(Base):
- def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1", **kwargs):
- if not base_url:
- base_url = "https://openrouter.ai/api/v1"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class StepFunChat(Base):
- def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1", **kwargs):
- if not base_url:
- base_url = "https://api.stepfun.com/v1"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class NvidiaChat(Base):
- def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1", **kwargs):
- if not base_url:
- base_url = "https://integrate.api.nvidia.com/v1"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class LmStudioChat(Base):
- def __init__(self, key, model_name, base_url, **kwargs):
- if not base_url:
- raise ValueError("Local llm url cannot be None")
- base_url = urljoin(base_url, "v1")
- super().__init__(key, model_name, base_url, **kwargs)
- self.client = OpenAI(api_key="lm-studio", base_url=base_url)
- self.model_name = model_name
-
-
- class OpenAI_APIChat(Base):
- def __init__(self, key, model_name, base_url):
- if not base_url:
- raise ValueError("url cannot be None")
- model_name = model_name.split("___")[0]
- super().__init__(key, model_name, base_url)
-
-
- class PPIOChat(Base):
- def __init__(self, key, model_name, base_url="https://api.ppinfra.com/v3/openai", **kwargs):
- if not base_url:
- base_url = "https://api.ppinfra.com/v3/openai"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class CoHereChat(Base):
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- from cohere import Client
-
- self.client = Client(api_key=key)
- self.model_name = model_name
-
- def _clean_conf(self, gen_conf):
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- if "top_p" in gen_conf:
- gen_conf["p"] = gen_conf.pop("top_p")
- if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
- gen_conf.pop("presence_penalty")
- return gen_conf
-
- def _chat(self, history, gen_conf):
- hist = []
- for item in history:
- hist.append(deepcopy(item))
- item = hist[-1]
- if "role" in item and item["role"] == "user":
- item["role"] = "USER"
- if "role" in item and item["role"] == "assistant":
- item["role"] = "CHATBOT"
- if "content" in item:
- item["message"] = item.pop("content")
- mes = hist.pop()["message"]
- response = self.client.chat(model=self.model_name, chat_history=hist, message=mes, **gen_conf)
- ans = response.text
- if response.finish_reason == "MAX_TOKENS":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return (
- ans,
- response.meta.tokens.input_tokens + response.meta.tokens.output_tokens,
- )
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- if "top_p" in gen_conf:
- gen_conf["p"] = gen_conf.pop("top_p")
- if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
- gen_conf.pop("presence_penalty")
- for item in history:
- if "role" in item and item["role"] == "user":
- item["role"] = "USER"
- if "role" in item and item["role"] == "assistant":
- item["role"] = "CHATBOT"
- if "content" in item:
- item["message"] = item.pop("content")
- mes = history.pop()["message"]
- ans = ""
- total_tokens = 0
- try:
- response = self.client.chat_stream(model=self.model_name, chat_history=history, message=mes, **gen_conf)
- for resp in response:
- if resp.event_type == "text-generation":
- ans = resp.text
- total_tokens += num_tokens_from_string(resp.text)
- elif resp.event_type == "stream-end":
- if resp.finish_reason == "MAX_TOKENS":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- yield ans
-
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
-
- class LeptonAIChat(Base):
- def __init__(self, key, model_name, base_url=None, **kwargs):
- if not base_url:
- base_url = urljoin("https://" + model_name + ".lepton.run", "api/v1")
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class TogetherAIChat(Base):
- def __init__(self, key, model_name, base_url="https://api.together.xyz/v1", **kwargs):
- if not base_url:
- base_url = "https://api.together.xyz/v1"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class PerfXCloudChat(Base):
- def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1", **kwargs):
- if not base_url:
- base_url = "https://cloud.perfxlab.cn/v1"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class UpstageChat(Base):
- def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar", **kwargs):
- if not base_url:
- base_url = "https://api.upstage.ai/v1/solar"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class NovitaAIChat(Base):
- def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai", **kwargs):
- if not base_url:
- base_url = "https://api.novita.ai/v3/openai"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class SILICONFLOWChat(Base):
- def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1", **kwargs):
- if not base_url:
- base_url = "https://api.siliconflow.cn/v1"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class YiChat(Base):
- def __init__(self, key, model_name, base_url="https://api.lingyiwanwu.com/v1", **kwargs):
- if not base_url:
- base_url = "https://api.lingyiwanwu.com/v1"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class ReplicateChat(Base):
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- from replicate.client import Client
-
- self.model_name = model_name
- self.client = Client(api_token=key)
-
- def _chat(self, history, gen_conf):
- system = history[0]["content"] if history and history[0]["role"] == "system" else ""
- prompt = "\n".join([item["role"] + ":" + item["content"] for item in history[-5:] if item["role"] != "system"])
- response = self.client.run(
- self.model_name,
- input={"system_prompt": system, "prompt": prompt, **gen_conf},
- )
- ans = "".join(response)
- return ans, num_tokens_from_string(ans)
-
- def chat_streamly(self, system, history, gen_conf):
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- prompt = "\n".join([item["role"] + ":" + item["content"] for item in history[-5:]])
- ans = ""
- try:
- response = self.client.run(
- self.model_name,
- input={"system_prompt": system, "prompt": prompt, **gen_conf},
- )
- for resp in response:
- ans = resp
- yield ans
-
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield num_tokens_from_string(ans)
-
-
- class HunyuanChat(Base):
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- from tencentcloud.common import credential
- from tencentcloud.hunyuan.v20230901 import hunyuan_client
-
- key = json.loads(key)
- sid = key.get("hunyuan_sid", "")
- sk = key.get("hunyuan_sk", "")
- cred = credential.Credential(sid, sk)
- self.model_name = model_name
- self.client = hunyuan_client.HunyuanClient(cred, "")
-
- def _clean_conf(self, gen_conf):
- _gen_conf = {}
- if "temperature" in gen_conf:
- _gen_conf["Temperature"] = gen_conf["temperature"]
- if "top_p" in gen_conf:
- _gen_conf["TopP"] = gen_conf["top_p"]
- return _gen_conf
-
- def _chat(self, history, gen_conf):
- from tencentcloud.hunyuan.v20230901 import models
-
- hist = [{k.capitalize(): v for k, v in item.items()} for item in history]
- req = models.ChatCompletionsRequest()
- params = {"Model": self.model_name, "Messages": hist, **gen_conf}
- req.from_json_string(json.dumps(params))
- response = self.client.ChatCompletions(req)
- ans = response.Choices[0].Message.Content
- return ans, response.Usage.TotalTokens
-
- def chat_streamly(self, system, history, gen_conf):
- from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
- TencentCloudSDKException,
- )
- from tencentcloud.hunyuan.v20230901 import models
-
- _gen_conf = {}
- _history = [{k.capitalize(): v for k, v in item.items()} for item in history]
- if system:
- _history.insert(0, {"Role": "system", "Content": system})
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- if "temperature" in gen_conf:
- _gen_conf["Temperature"] = gen_conf["temperature"]
- if "top_p" in gen_conf:
- _gen_conf["TopP"] = gen_conf["top_p"]
- req = models.ChatCompletionsRequest()
- params = {
- "Model": self.model_name,
- "Messages": _history,
- "Stream": True,
- **_gen_conf,
- }
- req.from_json_string(json.dumps(params))
- ans = ""
- total_tokens = 0
- try:
- response = self.client.ChatCompletions(req)
- for resp in response:
- resp = json.loads(resp["data"])
- if not resp["Choices"] or not resp["Choices"][0]["Delta"]["Content"]:
- continue
- ans = resp["Choices"][0]["Delta"]["Content"]
- total_tokens += 1
-
- yield ans
-
- except TencentCloudSDKException as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
-
- class SparkChat(Base):
- def __init__(self, key, model_name, base_url="https://spark-api-open.xf-yun.com/v1", **kwargs):
- if not base_url:
- base_url = "https://spark-api-open.xf-yun.com/v1"
- model2version = {
- "Spark-Max": "generalv3.5",
- "Spark-Lite": "general",
- "Spark-Pro": "generalv3",
- "Spark-Pro-128K": "pro-128k",
- "Spark-4.0-Ultra": "4.0Ultra",
- }
- version2model = {v: k for k, v in model2version.items()}
- assert model_name in model2version or model_name in version2model, f"The given model name is not supported yet. Support: {list(model2version.keys())}"
- if model_name in model2version:
- model_version = model2version[model_name]
- else:
- model_version = model_name
- super().__init__(key, model_version, base_url, **kwargs)
-
-
- class BaiduYiyanChat(Base):
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- import qianfan
-
- key = json.loads(key)
- ak = key.get("yiyan_ak", "")
- sk = key.get("yiyan_sk", "")
- self.client = qianfan.ChatCompletion(ak=ak, sk=sk)
- self.model_name = model_name.lower()
-
- def _clean_conf(self, gen_conf):
- gen_conf["penalty_score"] = ((gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2) + 1
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- return gen_conf
-
- def _chat(self, history, gen_conf):
- system = history[0]["content"] if history and history[0]["role"] == "system" else ""
- response = self.client.do(model=self.model_name, messages=[h for h in history if h["role"] != "system"], system=system, **gen_conf).body
- ans = response["result"]
- return ans, self.total_token_count(response)
-
- def chat_streamly(self, system, history, gen_conf):
- gen_conf["penalty_score"] = ((gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2) + 1
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- ans = ""
- total_tokens = 0
-
- try:
- response = self.client.do(model=self.model_name, messages=history, system=system, stream=True, **gen_conf)
- for resp in response:
- resp = resp.body
- ans = resp["result"]
- total_tokens = self.total_token_count(resp)
-
- yield ans
-
- except Exception as e:
- return ans + "\n**ERROR**: " + str(e), 0
-
- yield total_tokens
-
-
- class AnthropicChat(Base):
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- import anthropic
-
- self.client = anthropic.Anthropic(api_key=key)
- self.model_name = model_name
-
- def _clean_conf(self, gen_conf):
- if "presence_penalty" in gen_conf:
- del gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf:
- del gen_conf["frequency_penalty"]
- gen_conf["max_tokens"] = 8192
- if "haiku" in self.model_name or "opus" in self.model_name:
- gen_conf["max_tokens"] = 4096
- return gen_conf
-
- def _chat(self, history, gen_conf):
- system = history[0]["content"] if history and history[0]["role"] == "system" else ""
- response = self.client.messages.create(
- model=self.model_name,
- messages=[h for h in history if h["role"] != "system"],
- system=system,
- stream=False,
- **gen_conf,
- ).to_dict()
- ans = response["content"][0]["text"]
- if response["stop_reason"] == "max_tokens":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return (
- ans,
- response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
- )
-
- def chat_streamly(self, system, history, gen_conf):
- if "presence_penalty" in gen_conf:
- del gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf:
- del gen_conf["frequency_penalty"]
- gen_conf["max_tokens"] = 8192
- if "haiku" in self.model_name or "opus" in self.model_name:
- gen_conf["max_tokens"] = 4096
-
- ans = ""
- total_tokens = 0
- reasoning_start = False
- try:
- response = self.client.messages.create(
- model=self.model_name,
- messages=history,
- system=system,
- stream=True,
- **gen_conf,
- )
- for res in response:
- if res.type == "content_block_delta":
- if res.delta.type == "thinking_delta" and res.delta.thinking:
- ans = ""
- if not reasoning_start:
- reasoning_start = True
- ans = "<think>"
- ans += res.delta.thinking + "</think>"
- else:
- reasoning_start = False
- text = res.delta.text
- ans = text
- total_tokens += num_tokens_from_string(text)
- yield ans
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
-
- class GoogleChat(Base):
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- import base64
-
- from google.oauth2 import service_account
-
- key = json.loads(key)
- access_token = json.loads(base64.b64decode(key.get("google_service_account_key", "")))
- project_id = key.get("google_project_id", "")
- region = key.get("google_region", "")
-
- scopes = ["https://www.googleapis.com/auth/cloud-platform"]
- self.model_name = model_name
-
- if "claude" in self.model_name:
- from anthropic import AnthropicVertex
- from google.auth.transport.requests import Request
-
- if access_token:
- credits = service_account.Credentials.from_service_account_info(access_token, scopes=scopes)
- request = Request()
- credits.refresh(request)
- token = credits.token
- self.client = AnthropicVertex(region=region, project_id=project_id, access_token=token)
- else:
- self.client = AnthropicVertex(region=region, project_id=project_id)
- else:
- import vertexai.generative_models as glm
- from google.cloud import aiplatform
-
- if access_token:
- credits = service_account.Credentials.from_service_account_info(access_token)
- aiplatform.init(credentials=credits, project=project_id, location=region)
- else:
- aiplatform.init(project=project_id, location=region)
- self.client = glm.GenerativeModel(model_name=self.model_name)
-
- def _clean_conf(self, gen_conf):
- if "claude" in self.model_name:
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- else:
- if "max_tokens" in gen_conf:
- gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_output_tokens"]:
- del gen_conf[k]
- return gen_conf
-
- def _chat(self, history, gen_conf):
- system = history[0]["content"] if history and history[0]["role"] == "system" else ""
- if "claude" in self.model_name:
- response = self.client.messages.create(
- model=self.model_name,
- messages=[h for h in history if h["role"] != "system"],
- system=system,
- stream=False,
- **gen_conf,
- ).json()
- ans = response["content"][0]["text"]
- if response["stop_reason"] == "max_tokens":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return (
- ans,
- response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
- )
-
- self.client._system_instruction = system
- hist = []
- for item in history:
- if item["role"] == "system":
- continue
- hist.append(deepcopy(item))
- item = hist[-1]
- if "role" in item and item["role"] == "assistant":
- item["role"] = "model"
- if "content" in item:
- item["parts"] = item.pop("content")
-
- response = self.client.generate_content(hist, generation_config=gen_conf)
- ans = response.text
- return ans, response.usage_metadata.total_token_count
-
- def chat_streamly(self, system, history, gen_conf):
- if "claude" in self.model_name:
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- ans = ""
- total_tokens = 0
- try:
- response = self.client.messages.create(
- model=self.model_name,
- messages=history,
- system=system,
- stream=True,
- **gen_conf,
- )
- for res in response.iter_lines():
- res = res.decode("utf-8")
- if "content_block_delta" in res and "data" in res:
- text = json.loads(res[6:])["delta"]["text"]
- ans = text
- total_tokens += num_tokens_from_string(text)
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
- else:
- self.client._system_instruction = system
- if "max_tokens" in gen_conf:
- gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_output_tokens"]:
- del gen_conf[k]
- for item in history:
- if "role" in item and item["role"] == "assistant":
- item["role"] = "model"
- if "content" in item:
- item["parts"] = item.pop("content")
- ans = ""
- try:
- response = self.model.generate_content(history, generation_config=gen_conf, stream=True)
- for resp in response:
- ans = resp.text
- yield ans
-
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield response._chunks[-1].usage_metadata.total_token_count
-
-
- class GPUStackChat(Base):
- def __init__(self, key=None, model_name="", base_url="", **kwargs):
- if not base_url:
- raise ValueError("Local llm url cannot be None")
- base_url = urljoin(base_url, "v1")
- super().__init__(key, model_name, base_url, **kwargs)
|