Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

llm_app.py 12KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. from flask import request
  17. from flask_login import login_required, current_user
  18. from api.db.services.llm_service import LLMFactoriesService, TenantLLMService, LLMService
  19. from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
  20. from api.db import StatusEnum, LLMType
  21. from api.db.db_models import TenantLLM
  22. from api.utils.api_utils import get_json_result
  23. from rag.llm import EmbeddingModel, ChatModel, RerankModel, CvModel, TTSModel
  24. import requests
  25. import ast
  26. @manager.route('/factories', methods=['GET'])
  27. @login_required
  28. def factories():
  29. try:
  30. fac = LLMFactoriesService.get_all()
  31. return get_json_result(data=[f.to_dict() for f in fac if f.name not in ["Youdao", "FastEmbed", "BAAI"]])
  32. except Exception as e:
  33. return server_error_response(e)
  34. @manager.route('/set_api_key', methods=['POST'])
  35. @login_required
  36. @validate_request("llm_factory", "api_key")
  37. def set_api_key():
  38. req = request.json
  39. # test if api key works
  40. chat_passed, embd_passed, rerank_passed = False, False, False
  41. factory = req["llm_factory"]
  42. msg = ""
  43. for llm in LLMService.query(fid=factory):
  44. if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
  45. mdl = EmbeddingModel[factory](
  46. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  47. try:
  48. arr, tc = mdl.encode(["Test if the api key is available"])
  49. if len(arr[0]) == 0:
  50. raise Exception("Fail")
  51. embd_passed = True
  52. except Exception as e:
  53. msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
  54. elif not chat_passed and llm.model_type == LLMType.CHAT.value:
  55. mdl = ChatModel[factory](
  56. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  57. try:
  58. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}],
  59. {"temperature": 0.9,'max_tokens':50})
  60. if m.find("**ERROR**") >=0:
  61. raise Exception(m)
  62. except Exception as e:
  63. msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
  64. e)
  65. chat_passed = True
  66. elif not rerank_passed and llm.model_type == LLMType.RERANK:
  67. mdl = RerankModel[factory](
  68. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  69. try:
  70. arr, tc = mdl.similarity("What's the weather?", ["Is it sunny today?"])
  71. if len(arr) == 0 or tc == 0:
  72. raise Exception("Fail")
  73. except Exception as e:
  74. msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
  75. e)
  76. rerank_passed = True
  77. if msg:
  78. return get_data_error_result(retmsg=msg)
  79. llm = {
  80. "api_key": req["api_key"],
  81. "api_base": req.get("base_url", "")
  82. }
  83. for n in ["model_type", "llm_name"]:
  84. if n in req:
  85. llm[n] = req[n]
  86. if not TenantLLMService.filter_update(
  87. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory], llm):
  88. for llm in LLMService.query(fid=factory):
  89. TenantLLMService.save(
  90. tenant_id=current_user.id,
  91. llm_factory=factory,
  92. llm_name=llm.llm_name,
  93. model_type=llm.model_type,
  94. api_key=req["api_key"],
  95. api_base=req.get("base_url", "")
  96. )
  97. return get_json_result(data=True)
  98. @manager.route('/add_llm', methods=['POST'])
  99. @login_required
  100. @validate_request("llm_factory")
  101. def add_llm():
  102. req = request.json
  103. factory = req["llm_factory"]
  104. if factory == "VolcEngine":
  105. # For VolcEngine, due to its special authentication method
  106. # Assemble ark_api_key endpoint_id into api_key
  107. llm_name = req["llm_name"]
  108. api_key = '{' + f'"ark_api_key": "{req.get("ark_api_key", "")}", ' \
  109. f'"ep_id": "{req.get("endpoint_id", "")}", ' + '}'
  110. elif factory == "Tencent Hunyuan":
  111. api_key = '{' + f'"hunyuan_sid": "{req.get("hunyuan_sid", "")}", ' \
  112. f'"hunyuan_sk": "{req.get("hunyuan_sk", "")}"' + '}'
  113. req["api_key"] = api_key
  114. return set_api_key()
  115. elif factory == "Tencent Cloud":
  116. api_key = '{' + f'"tencent_cloud_sid": "{req.get("tencent_cloud_sid", "")}", ' \
  117. f'"tencent_cloud_sk": "{req.get("tencent_cloud_sk", "")}"' + '}'
  118. req["api_key"] = api_key
  119. elif factory == "Bedrock":
  120. # For Bedrock, due to its special authentication method
  121. # Assemble bedrock_ak, bedrock_sk, bedrock_region
  122. llm_name = req["llm_name"]
  123. api_key = '{' + f'"bedrock_ak": "{req.get("bedrock_ak", "")}", ' \
  124. f'"bedrock_sk": "{req.get("bedrock_sk", "")}", ' \
  125. f'"bedrock_region": "{req.get("bedrock_region", "")}", ' + '}'
  126. elif factory == "LocalAI":
  127. llm_name = req["llm_name"]+"___LocalAI"
  128. api_key = "xxxxxxxxxxxxxxx"
  129. elif factory == "OpenAI-API-Compatible":
  130. llm_name = req["llm_name"]+"___OpenAI-API"
  131. api_key = req.get("api_key","xxxxxxxxxxxxxxx")
  132. elif factory =="XunFei Spark":
  133. llm_name = req["llm_name"]
  134. api_key = req.get("spark_api_password","xxxxxxxxxxxxxxx")
  135. elif factory == "BaiduYiyan":
  136. llm_name = req["llm_name"]
  137. api_key = '{' + f'"yiyan_ak": "{req.get("yiyan_ak", "")}", ' \
  138. f'"yiyan_sk": "{req.get("yiyan_sk", "")}"' + '}'
  139. elif factory == "Fish Audio":
  140. llm_name = req["llm_name"]
  141. api_key = '{' + f'"fish_audio_ak": "{req.get("fish_audio_ak", "")}", ' \
  142. f'"fish_audio_refid": "{req.get("fish_audio_refid", "59cb5986671546eaa6ca8ae6f29f6d22")}"' + '}'
  143. else:
  144. llm_name = req["llm_name"]
  145. api_key = req.get("api_key","xxxxxxxxxxxxxxx")
  146. llm = {
  147. "tenant_id": current_user.id,
  148. "llm_factory": factory,
  149. "model_type": req["model_type"],
  150. "llm_name": llm_name,
  151. "api_base": req.get("api_base", ""),
  152. "api_key": api_key
  153. }
  154. msg = ""
  155. if llm["model_type"] == LLMType.EMBEDDING.value:
  156. mdl = EmbeddingModel[factory](
  157. key=llm['api_key'],
  158. model_name=llm["llm_name"],
  159. base_url=llm["api_base"])
  160. try:
  161. arr, tc = mdl.encode(["Test if the api key is available"])
  162. if len(arr[0]) == 0 or tc == 0:
  163. raise Exception("Fail")
  164. except Exception as e:
  165. msg += f"\nFail to access embedding model({llm['llm_name']})." + str(e)
  166. elif llm["model_type"] == LLMType.CHAT.value:
  167. mdl = ChatModel[factory](
  168. key=llm['api_key'],
  169. model_name=llm["llm_name"],
  170. base_url=llm["api_base"]
  171. )
  172. try:
  173. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
  174. "temperature": 0.9})
  175. if not tc:
  176. raise Exception(m)
  177. except Exception as e:
  178. msg += f"\nFail to access model({llm['llm_name']})." + str(
  179. e)
  180. elif llm["model_type"] == LLMType.RERANK:
  181. mdl = RerankModel[factory](
  182. key=llm["api_key"],
  183. model_name=llm["llm_name"],
  184. base_url=llm["api_base"]
  185. )
  186. try:
  187. arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!"])
  188. if len(arr) == 0 or tc == 0:
  189. raise Exception("Not known.")
  190. except Exception as e:
  191. msg += f"\nFail to access model({llm['llm_name']})." + str(
  192. e)
  193. elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
  194. mdl = CvModel[factory](
  195. key=llm["api_key"],
  196. model_name=llm["llm_name"],
  197. base_url=llm["api_base"]
  198. )
  199. try:
  200. img_url = (
  201. "https://upload.wikimedia.org/wikipedia/comm"
  202. "ons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/256"
  203. "0px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
  204. )
  205. res = requests.get(img_url)
  206. if res.status_code == 200:
  207. m, tc = mdl.describe(res.content)
  208. if not tc:
  209. raise Exception(m)
  210. else:
  211. pass
  212. except Exception as e:
  213. msg += f"\nFail to access model({llm['llm_name']})." + str(e)
  214. elif llm["model_type"] == LLMType.TTS:
  215. mdl = TTSModel[factory](
  216. key=llm["api_key"], model_name=llm["llm_name"], base_url=llm["api_base"]
  217. )
  218. try:
  219. for resp in mdl.transcription("Hello~ Ragflower!"):
  220. pass
  221. except RuntimeError as e:
  222. msg += f"\nFail to access model({llm['llm_name']})." + str(e)
  223. else:
  224. # TODO: check other type of models
  225. pass
  226. if msg:
  227. return get_data_error_result(retmsg=msg)
  228. if not TenantLLMService.filter_update(
  229. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory, TenantLLM.llm_name == llm["llm_name"]], llm):
  230. TenantLLMService.save(**llm)
  231. return get_json_result(data=True)
  232. @manager.route('/delete_llm', methods=['POST'])
  233. @login_required
  234. @validate_request("llm_factory", "llm_name")
  235. def delete_llm():
  236. req = request.json
  237. TenantLLMService.filter_delete(
  238. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"], TenantLLM.llm_name == req["llm_name"]])
  239. return get_json_result(data=True)
  240. @manager.route('/my_llms', methods=['GET'])
  241. @login_required
  242. def my_llms():
  243. try:
  244. res = {}
  245. for o in TenantLLMService.get_my_llms(current_user.id):
  246. if o["llm_factory"] not in res:
  247. res[o["llm_factory"]] = {
  248. "tags": o["tags"],
  249. "llm": []
  250. }
  251. res[o["llm_factory"]]["llm"].append({
  252. "type": o["model_type"],
  253. "name": o["llm_name"],
  254. "used_token": o["used_tokens"]
  255. })
  256. return get_json_result(data=res)
  257. except Exception as e:
  258. return server_error_response(e)
  259. @manager.route('/list', methods=['GET'])
  260. @login_required
  261. def list_app():
  262. model_type = request.args.get("model_type")
  263. try:
  264. objs = TenantLLMService.query(tenant_id=current_user.id)
  265. facts = set([o.to_dict()["llm_factory"] for o in objs if o.api_key])
  266. llms = LLMService.get_all()
  267. llms = [m.to_dict()
  268. for m in llms if m.status == StatusEnum.VALID.value]
  269. for m in llms:
  270. m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in ["Youdao","FastEmbed", "BAAI"]
  271. llm_set = set([m["llm_name"] for m in llms])
  272. for o in objs:
  273. if not o.api_key:continue
  274. if o.llm_name in llm_set:continue
  275. llms.append({"llm_name": o.llm_name, "model_type": o.model_type, "fid": o.llm_factory, "available": True})
  276. res = {}
  277. for m in llms:
  278. if model_type and m["model_type"].find(model_type)<0:
  279. continue
  280. if m["fid"] not in res:
  281. res[m["fid"]] = []
  282. res[m["fid"]].append(m)
  283. return get_json_result(data=res)
  284. except Exception as e:
  285. return server_error_response(e)