Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import datetime
  17. import json
  18. import logging
  19. import re
  20. from collections import defaultdict
  21. import jinja2
  22. import json_repair
  23. from rag.prompt_template import load_prompt
  24. from rag.settings import TAG_FLD
  25. from rag.utils import encoder, num_tokens_from_string
  26. def chunks_format(reference):
  27. def get_value(d, k1, k2):
  28. return d.get(k1, d.get(k2))
  29. return [
  30. {
  31. "id": get_value(chunk, "chunk_id", "id"),
  32. "content": get_value(chunk, "content", "content_with_weight"),
  33. "document_id": get_value(chunk, "doc_id", "document_id"),
  34. "document_name": get_value(chunk, "docnm_kwd", "document_name"),
  35. "dataset_id": get_value(chunk, "kb_id", "dataset_id"),
  36. "image_id": get_value(chunk, "image_id", "img_id"),
  37. "positions": get_value(chunk, "positions", "position_int"),
  38. "url": chunk.get("url"),
  39. "similarity": chunk.get("similarity"),
  40. "vector_similarity": chunk.get("vector_similarity"),
  41. "term_similarity": chunk.get("term_similarity"),
  42. "doc_type": chunk.get("doc_type_kwd"),
  43. }
  44. for chunk in reference.get("chunks", [])
  45. ]
  46. def message_fit_in(msg, max_length=4000):
  47. def count():
  48. nonlocal msg
  49. tks_cnts = []
  50. for m in msg:
  51. tks_cnts.append({"role": m["role"], "count": num_tokens_from_string(m["content"])})
  52. total = 0
  53. for m in tks_cnts:
  54. total += m["count"]
  55. return total
  56. c = count()
  57. if c < max_length:
  58. return c, msg
  59. msg_ = [m for m in msg if m["role"] == "system"]
  60. if len(msg) > 1:
  61. msg_.append(msg[-1])
  62. msg = msg_
  63. c = count()
  64. if c < max_length:
  65. return c, msg
  66. ll = num_tokens_from_string(msg_[0]["content"])
  67. ll2 = num_tokens_from_string(msg_[-1]["content"])
  68. if ll / (ll + ll2) > 0.8:
  69. m = msg_[0]["content"]
  70. m = encoder.decode(encoder.encode(m)[: max_length - ll2])
  71. msg[0]["content"] = m
  72. return max_length, msg
  73. m = msg_[-1]["content"]
  74. m = encoder.decode(encoder.encode(m)[: max_length - ll2])
  75. msg[-1]["content"] = m
  76. return max_length, msg
  77. def kb_prompt(kbinfos, max_tokens):
  78. from api.db.services.document_service import DocumentService
  79. knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
  80. kwlg_len = len(knowledges)
  81. used_token_count = 0
  82. chunks_num = 0
  83. for i, c in enumerate(knowledges):
  84. used_token_count += num_tokens_from_string(c)
  85. chunks_num += 1
  86. if max_tokens * 0.97 < used_token_count:
  87. knowledges = knowledges[:i]
  88. logging.warning(f"Not all the retrieval into prompt: {len(knowledges)}/{kwlg_len}")
  89. break
  90. docs = DocumentService.get_by_ids([ck["doc_id"] for ck in kbinfos["chunks"][:chunks_num]])
  91. docs = {d.id: d.meta_fields for d in docs}
  92. doc2chunks = defaultdict(lambda: {"chunks": [], "meta": []})
  93. for i, ck in enumerate(kbinfos["chunks"][:chunks_num]):
  94. cnt = f"---\nID: {i}\n" + (f"URL: {ck['url']}\n" if "url" in ck else "")
  95. cnt += re.sub(r"( style=\"[^\"]+\"|</?(html|body|head|title)>|<!DOCTYPE html>)", " ", ck["content_with_weight"], flags=re.DOTALL | re.IGNORECASE)
  96. doc2chunks[ck["docnm_kwd"]]["chunks"].append(cnt)
  97. doc2chunks[ck["docnm_kwd"]]["meta"] = docs.get(ck["doc_id"], {})
  98. knowledges = []
  99. for nm, cks_meta in doc2chunks.items():
  100. txt = f"\nDocument: {nm} \n"
  101. for k, v in cks_meta["meta"].items():
  102. txt += f"{k}: {v}\n"
  103. txt += "Relevant fragments as following:\n"
  104. for i, chunk in enumerate(cks_meta["chunks"], 1):
  105. txt += f"{chunk}\n"
  106. knowledges.append(txt)
  107. return knowledges
  108. CITATION_PROMPT_TEMPLATE = load_prompt("citation_prompt")
  109. CONTENT_TAGGING_PROMPT_TEMPLATE = load_prompt("content_tagging_prompt")
  110. CROSS_LANGUAGES_SYS_PROMPT_TEMPLATE = load_prompt("cross_languages_sys_prompt")
  111. CROSS_LANGUAGES_USER_PROMPT_TEMPLATE = load_prompt("cross_languages_user_prompt")
  112. FULL_QUESTION_PROMPT_TEMPLATE = load_prompt("full_question_prompt")
  113. KEYWORD_PROMPT_TEMPLATE = load_prompt("keyword_prompt")
  114. QUESTION_PROMPT_TEMPLATE = load_prompt("question_prompt")
  115. VISION_LLM_DESCRIBE_PROMPT = load_prompt("vision_llm_describe_prompt")
  116. VISION_LLM_FIGURE_DESCRIBE_PROMPT = load_prompt("vision_llm_figure_describe_prompt")
  117. PROMPT_JINJA_ENV = jinja2.Environment(autoescape=False, trim_blocks=True, lstrip_blocks=True)
  118. def citation_prompt() -> str:
  119. template = PROMPT_JINJA_ENV.from_string(CITATION_PROMPT_TEMPLATE)
  120. return template.render()
  121. def keyword_extraction(chat_mdl, content, topn=3):
  122. template = PROMPT_JINJA_ENV.from_string(KEYWORD_PROMPT_TEMPLATE)
  123. rendered_prompt = template.render(content=content, topn=topn)
  124. msg = [{"role": "system", "content": rendered_prompt}, {"role": "user", "content": "Output: "}]
  125. _, msg = message_fit_in(msg, chat_mdl.max_length)
  126. kwd = chat_mdl.chat(rendered_prompt, msg[1:], {"temperature": 0.2})
  127. if isinstance(kwd, tuple):
  128. kwd = kwd[0]
  129. kwd = re.sub(r"^.*</think>", "", kwd, flags=re.DOTALL)
  130. if kwd.find("**ERROR**") >= 0:
  131. return ""
  132. return kwd
  133. def question_proposal(chat_mdl, content, topn=3):
  134. template = PROMPT_JINJA_ENV.from_string(QUESTION_PROMPT_TEMPLATE)
  135. rendered_prompt = template.render(content=content, topn=topn)
  136. msg = [{"role": "system", "content": rendered_prompt}, {"role": "user", "content": "Output: "}]
  137. _, msg = message_fit_in(msg, chat_mdl.max_length)
  138. kwd = chat_mdl.chat(rendered_prompt, msg[1:], {"temperature": 0.2})
  139. if isinstance(kwd, tuple):
  140. kwd = kwd[0]
  141. kwd = re.sub(r"^.*</think>", "", kwd, flags=re.DOTALL)
  142. if kwd.find("**ERROR**") >= 0:
  143. return ""
  144. return kwd
  145. def full_question(tenant_id, llm_id, messages, language=None):
  146. from api.db import LLMType
  147. from api.db.services.llm_service import LLMBundle
  148. from api.db.services.llm_service import TenantLLMService
  149. if TenantLLMService.llm_id2llm_type(llm_id) == "image2text":
  150. chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
  151. else:
  152. chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
  153. conv = []
  154. for m in messages:
  155. if m["role"] not in ["user", "assistant"]:
  156. continue
  157. conv.append("{}: {}".format(m["role"].upper(), m["content"]))
  158. conversation = "\n".join(conv)
  159. today = datetime.date.today().isoformat()
  160. yesterday = (datetime.date.today() - datetime.timedelta(days=1)).isoformat()
  161. tomorrow = (datetime.date.today() + datetime.timedelta(days=1)).isoformat()
  162. template = PROMPT_JINJA_ENV.from_string(FULL_QUESTION_PROMPT_TEMPLATE)
  163. rendered_prompt = template.render(
  164. today=today,
  165. yesterday=yesterday,
  166. tomorrow=tomorrow,
  167. conversation=conversation,
  168. language=language,
  169. )
  170. ans = chat_mdl.chat(rendered_prompt, [{"role": "user", "content": "Output: "}], {"temperature": 0.2})
  171. ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
  172. return ans if ans.find("**ERROR**") < 0 else messages[-1]["content"]
  173. def cross_languages(tenant_id, llm_id, query, languages=[]):
  174. from api.db import LLMType
  175. from api.db.services.llm_service import LLMBundle
  176. from api.db.services.llm_service import TenantLLMService
  177. if llm_id and TenantLLMService.llm_id2llm_type(llm_id) == "image2text":
  178. chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
  179. else:
  180. chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
  181. rendered_sys_prompt = PROMPT_JINJA_ENV.from_string(CROSS_LANGUAGES_SYS_PROMPT_TEMPLATE).render()
  182. rendered_user_prompt = PROMPT_JINJA_ENV.from_string(CROSS_LANGUAGES_USER_PROMPT_TEMPLATE).render(query=query, languages=languages)
  183. ans = chat_mdl.chat(rendered_sys_prompt, [{"role": "user", "content": rendered_user_prompt}], {"temperature": 0.2})
  184. ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
  185. if ans.find("**ERROR**") >= 0:
  186. return query
  187. return "\n".join([a for a in re.sub(r"(^Output:|\n+)", "", ans, flags=re.DOTALL).split("===") if a.strip()])
  188. def content_tagging(chat_mdl, content, all_tags, examples, topn=3):
  189. template = PROMPT_JINJA_ENV.from_string(CONTENT_TAGGING_PROMPT_TEMPLATE)
  190. for ex in examples:
  191. ex["tags_json"] = json.dumps(ex[TAG_FLD], indent=2, ensure_ascii=False)
  192. rendered_prompt = template.render(
  193. topn=topn,
  194. all_tags=all_tags,
  195. examples=examples,
  196. content=content,
  197. )
  198. msg = [{"role": "system", "content": rendered_prompt}, {"role": "user", "content": "Output: "}]
  199. _, msg = message_fit_in(msg, chat_mdl.max_length)
  200. kwd = chat_mdl.chat(rendered_prompt, msg[1:], {"temperature": 0.5})
  201. if isinstance(kwd, tuple):
  202. kwd = kwd[0]
  203. kwd = re.sub(r"^.*</think>", "", kwd, flags=re.DOTALL)
  204. if kwd.find("**ERROR**") >= 0:
  205. raise Exception(kwd)
  206. try:
  207. obj = json_repair.loads(kwd)
  208. except json_repair.JSONDecodeError:
  209. try:
  210. result = kwd.replace(rendered_prompt[:-1], "").replace("user", "").replace("model", "").strip()
  211. result = "{" + result.split("{")[1].split("}")[0] + "}"
  212. obj = json_repair.loads(result)
  213. except Exception as e:
  214. logging.exception(f"JSON parsing error: {result} -> {e}")
  215. raise e
  216. res = {}
  217. for k, v in obj.items():
  218. try:
  219. if int(v) > 0:
  220. res[str(k)] = int(v)
  221. except Exception:
  222. pass
  223. return res
  224. def vision_llm_describe_prompt(page=None) -> str:
  225. template = PROMPT_JINJA_ENV.from_string(VISION_LLM_DESCRIBE_PROMPT)
  226. return template.render(page=page)
  227. def vision_llm_figure_describe_prompt() -> str:
  228. template = PROMPT_JINJA_ENV.from_string(VISION_LLM_FIGURE_DESCRIBE_PROMPT)
  229. return template.render()
  230. if __name__ == "__main__":
  231. print(CITATION_PROMPT_TEMPLATE)
  232. print(CONTENT_TAGGING_PROMPT_TEMPLATE)
  233. print(CROSS_LANGUAGES_SYS_PROMPT_TEMPLATE)
  234. print(CROSS_LANGUAGES_USER_PROMPT_TEMPLATE)
  235. print(FULL_QUESTION_PROMPT_TEMPLATE)
  236. print(KEYWORD_PROMPT_TEMPLATE)
  237. print(QUESTION_PROMPT_TEMPLATE)
  238. print(VISION_LLM_DESCRIBE_PROMPT)
  239. print(VISION_LLM_FIGURE_DESCRIBE_PROMPT)