Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

llm_service.py 17KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import logging
  17. from langfuse import Langfuse
  18. from api import settings
  19. from api.db import LLMType
  20. from api.db.db_models import DB, LLM, LLMFactories, TenantLLM
  21. from api.db.services.common_service import CommonService
  22. from api.db.services.langfuse_service import TenantLangfuseService
  23. from api.db.services.user_service import TenantService
  24. from rag.llm import ChatModel, CvModel, EmbeddingModel, RerankModel, Seq2txtModel, TTSModel
  25. class LLMFactoriesService(CommonService):
  26. model = LLMFactories
  27. class LLMService(CommonService):
  28. model = LLM
  29. class TenantLLMService(CommonService):
  30. model = TenantLLM
  31. @classmethod
  32. @DB.connection_context()
  33. def get_api_key(cls, tenant_id, model_name):
  34. mdlnm, fid = TenantLLMService.split_model_name_and_factory(model_name)
  35. if not fid:
  36. objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm)
  37. else:
  38. objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
  39. if (not objs) and fid:
  40. if fid == "LocalAI":
  41. mdlnm += "___LocalAI"
  42. elif fid == "HuggingFace":
  43. mdlnm += "___HuggingFace"
  44. elif fid == "OpenAI-API-Compatible":
  45. mdlnm += "___OpenAI-API"
  46. elif fid == "VLLM":
  47. mdlnm += "___VLLM"
  48. objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
  49. if not objs:
  50. return
  51. return objs[0]
  52. @classmethod
  53. @DB.connection_context()
  54. def get_my_llms(cls, tenant_id):
  55. fields = [cls.model.llm_factory, LLMFactories.logo, LLMFactories.tags, cls.model.model_type, cls.model.llm_name, cls.model.used_tokens]
  56. objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
  57. return list(objs)
  58. @staticmethod
  59. def split_model_name_and_factory(model_name):
  60. arr = model_name.split("@")
  61. if len(arr) < 2:
  62. return model_name, None
  63. if len(arr) > 2:
  64. return "@".join(arr[0:-1]), arr[-1]
  65. # model name must be xxx@yyy
  66. try:
  67. model_factories = settings.FACTORY_LLM_INFOS
  68. model_providers = set([f["name"] for f in model_factories])
  69. if arr[-1] not in model_providers:
  70. return model_name, None
  71. return arr[0], arr[-1]
  72. except Exception as e:
  73. logging.exception(f"TenantLLMService.split_model_name_and_factory got exception: {e}")
  74. return model_name, None
  75. @classmethod
  76. @DB.connection_context()
  77. def get_model_config(cls, tenant_id, llm_type, llm_name=None):
  78. e, tenant = TenantService.get_by_id(tenant_id)
  79. if not e:
  80. raise LookupError("Tenant not found")
  81. if llm_type == LLMType.EMBEDDING.value:
  82. mdlnm = tenant.embd_id if not llm_name else llm_name
  83. elif llm_type == LLMType.SPEECH2TEXT.value:
  84. mdlnm = tenant.asr_id
  85. elif llm_type == LLMType.IMAGE2TEXT.value:
  86. mdlnm = tenant.img2txt_id if not llm_name else llm_name
  87. elif llm_type == LLMType.CHAT.value:
  88. mdlnm = tenant.llm_id if not llm_name else llm_name
  89. elif llm_type == LLMType.RERANK:
  90. mdlnm = tenant.rerank_id if not llm_name else llm_name
  91. elif llm_type == LLMType.TTS:
  92. mdlnm = tenant.tts_id if not llm_name else llm_name
  93. else:
  94. assert False, "LLM type error"
  95. model_config = cls.get_api_key(tenant_id, mdlnm)
  96. mdlnm, fid = TenantLLMService.split_model_name_and_factory(mdlnm)
  97. if not model_config: # for some cases seems fid mismatch
  98. model_config = cls.get_api_key(tenant_id, mdlnm)
  99. if model_config:
  100. model_config = model_config.to_dict()
  101. llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
  102. if not llm and fid: # for some cases seems fid mismatch
  103. llm = LLMService.query(llm_name=mdlnm)
  104. if llm:
  105. model_config["is_tools"] = llm[0].is_tools
  106. if not model_config:
  107. if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]:
  108. llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
  109. if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]:
  110. model_config = {"llm_factory": llm[0].fid, "api_key": "", "llm_name": mdlnm, "api_base": ""}
  111. if not model_config:
  112. if mdlnm == "flag-embedding":
  113. model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", "llm_name": llm_name, "api_base": ""}
  114. else:
  115. if not mdlnm:
  116. raise LookupError(f"Type of {llm_type} model is not set.")
  117. raise LookupError("Model({}) not authorized".format(mdlnm))
  118. return model_config
  119. @classmethod
  120. @DB.connection_context()
  121. def model_instance(cls, tenant_id, llm_type, llm_name=None, lang="Chinese"):
  122. model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
  123. if llm_type == LLMType.EMBEDDING.value:
  124. if model_config["llm_factory"] not in EmbeddingModel:
  125. return
  126. return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
  127. if llm_type == LLMType.RERANK:
  128. if model_config["llm_factory"] not in RerankModel:
  129. return
  130. return RerankModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
  131. if llm_type == LLMType.IMAGE2TEXT.value:
  132. if model_config["llm_factory"] not in CvModel:
  133. return
  134. return CvModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], lang, base_url=model_config["api_base"])
  135. if llm_type == LLMType.CHAT.value:
  136. if model_config["llm_factory"] not in ChatModel:
  137. return
  138. return ChatModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
  139. if llm_type == LLMType.SPEECH2TEXT:
  140. if model_config["llm_factory"] not in Seq2txtModel:
  141. return
  142. return Seq2txtModel[model_config["llm_factory"]](key=model_config["api_key"], model_name=model_config["llm_name"], lang=lang, base_url=model_config["api_base"])
  143. if llm_type == LLMType.TTS:
  144. if model_config["llm_factory"] not in TTSModel:
  145. return
  146. return TTSModel[model_config["llm_factory"]](
  147. model_config["api_key"],
  148. model_config["llm_name"],
  149. base_url=model_config["api_base"],
  150. )
  151. @classmethod
  152. @DB.connection_context()
  153. def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None):
  154. e, tenant = TenantService.get_by_id(tenant_id)
  155. if not e:
  156. logging.error(f"Tenant not found: {tenant_id}")
  157. return 0
  158. llm_map = {
  159. LLMType.EMBEDDING.value: tenant.embd_id if not llm_name else llm_name,
  160. LLMType.SPEECH2TEXT.value: tenant.asr_id,
  161. LLMType.IMAGE2TEXT.value: tenant.img2txt_id,
  162. LLMType.CHAT.value: tenant.llm_id if not llm_name else llm_name,
  163. LLMType.RERANK.value: tenant.rerank_id if not llm_name else llm_name,
  164. LLMType.TTS.value: tenant.tts_id if not llm_name else llm_name,
  165. }
  166. mdlnm = llm_map.get(llm_type)
  167. if mdlnm is None:
  168. logging.error(f"LLM type error: {llm_type}")
  169. return 0
  170. llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(mdlnm)
  171. try:
  172. num = (
  173. cls.model.update(used_tokens=cls.model.used_tokens + used_tokens)
  174. .where(cls.model.tenant_id == tenant_id, cls.model.llm_name == llm_name, cls.model.llm_factory == llm_factory if llm_factory else True)
  175. .execute()
  176. )
  177. except Exception:
  178. logging.exception("TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s", tenant_id, llm_name)
  179. return 0
  180. return num
  181. @classmethod
  182. @DB.connection_context()
  183. def get_openai_models(cls):
  184. objs = cls.model.select().where((cls.model.llm_factory == "OpenAI"), ~(cls.model.llm_name == "text-embedding-3-small"), ~(cls.model.llm_name == "text-embedding-3-large")).dicts()
  185. return list(objs)
  186. @staticmethod
  187. def llm_id2llm_type(llm_id: str) ->str|None:
  188. llm_id, *_ = TenantLLMService.split_model_name_and_factory(llm_id)
  189. llm_factories = settings.FACTORY_LLM_INFOS
  190. for llm_factory in llm_factories:
  191. for llm in llm_factory["llm"]:
  192. if llm_id == llm["llm_name"]:
  193. return llm["model_type"].strip(",")[-1]
  194. class LLMBundle:
  195. def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese"):
  196. self.tenant_id = tenant_id
  197. self.llm_type = llm_type
  198. self.llm_name = llm_name
  199. self.mdl = TenantLLMService.model_instance(tenant_id, llm_type, llm_name, lang=lang)
  200. assert self.mdl, "Can't find model for {}/{}/{}".format(tenant_id, llm_type, llm_name)
  201. model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
  202. self.max_length = model_config.get("max_tokens", 8192)
  203. self.is_tools = model_config.get("is_tools", False)
  204. langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=tenant_id)
  205. if langfuse_keys:
  206. langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, host=langfuse_keys.host)
  207. if langfuse.auth_check():
  208. self.langfuse = langfuse
  209. self.trace = self.langfuse.trace(name=f"{self.llm_type}-{self.llm_name}")
  210. else:
  211. self.langfuse = None
  212. def bind_tools(self, toolcall_session, tools):
  213. if not self.is_tools:
  214. logging.warning(f"Model {self.llm_name} does not support tool call, but you have assigned one or more tools to it!")
  215. return
  216. self.mdl.bind_tools(toolcall_session, tools)
  217. def encode(self, texts: list):
  218. if self.langfuse:
  219. generation = self.trace.generation(name="encode", model=self.llm_name, input={"texts": texts})
  220. embeddings, used_tokens = self.mdl.encode(texts)
  221. llm_name = getattr(self, "llm_name", None)
  222. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, llm_name):
  223. logging.error("LLMBundle.encode can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
  224. if self.langfuse:
  225. generation.end(usage_details={"total_tokens": used_tokens})
  226. return embeddings, used_tokens
  227. def encode_queries(self, query: str):
  228. if self.langfuse:
  229. generation = self.trace.generation(name="encode_queries", model=self.llm_name, input={"query": query})
  230. emd, used_tokens = self.mdl.encode_queries(query)
  231. llm_name = getattr(self, "llm_name", None)
  232. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, llm_name):
  233. logging.error("LLMBundle.encode_queries can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
  234. if self.langfuse:
  235. generation.end(usage_details={"total_tokens": used_tokens})
  236. return emd, used_tokens
  237. def similarity(self, query: str, texts: list):
  238. if self.langfuse:
  239. generation = self.trace.generation(name="similarity", model=self.llm_name, input={"query": query, "texts": texts})
  240. sim, used_tokens = self.mdl.similarity(query, texts)
  241. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
  242. logging.error("LLMBundle.similarity can't update token usage for {}/RERANK used_tokens: {}".format(self.tenant_id, used_tokens))
  243. if self.langfuse:
  244. generation.end(usage_details={"total_tokens": used_tokens})
  245. return sim, used_tokens
  246. def describe(self, image, max_tokens=300):
  247. if self.langfuse:
  248. generation = self.trace.generation(name="describe", metadata={"model": self.llm_name})
  249. txt, used_tokens = self.mdl.describe(image)
  250. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
  251. logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
  252. if self.langfuse:
  253. generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
  254. return txt
  255. def describe_with_prompt(self, image, prompt):
  256. if self.langfuse:
  257. generation = self.trace.generation(name="describe_with_prompt", metadata={"model": self.llm_name, "prompt": prompt})
  258. txt, used_tokens = self.mdl.describe_with_prompt(image, prompt)
  259. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
  260. logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
  261. if self.langfuse:
  262. generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
  263. return txt
  264. def transcription(self, audio):
  265. if self.langfuse:
  266. generation = self.trace.generation(name="transcription", metadata={"model": self.llm_name})
  267. txt, used_tokens = self.mdl.transcription(audio)
  268. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
  269. logging.error("LLMBundle.transcription can't update token usage for {}/SEQUENCE2TXT used_tokens: {}".format(self.tenant_id, used_tokens))
  270. if self.langfuse:
  271. generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
  272. return txt
  273. def tts(self, text):
  274. if self.langfuse:
  275. span = self.trace.span(name="tts", input={"text": text})
  276. for chunk in self.mdl.tts(text):
  277. if isinstance(chunk, int):
  278. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, chunk, self.llm_name):
  279. logging.error("LLMBundle.tts can't update token usage for {}/TTS".format(self.tenant_id))
  280. return
  281. yield chunk
  282. if self.langfuse:
  283. span.end()
  284. def _remove_reasoning_content(self, txt: str) -> str:
  285. first_think_start = txt.find("<think>")
  286. if first_think_start == -1:
  287. return txt
  288. last_think_end = txt.rfind("</think>")
  289. if last_think_end == -1:
  290. return txt
  291. if last_think_end < first_think_start:
  292. return txt
  293. return txt[last_think_end + len("</think>") :]
  294. def chat(self, system, history, gen_conf):
  295. if self.langfuse:
  296. generation = self.trace.generation(name="chat", model=self.llm_name, input={"system": system, "history": history})
  297. chat = self.mdl.chat
  298. if self.is_tools and self.mdl.is_tools:
  299. chat = self.mdl.chat_with_tools
  300. txt, used_tokens = chat(system, history, gen_conf)
  301. txt = self._remove_reasoning_content(txt)
  302. if isinstance(txt, int) and not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, self.llm_name):
  303. logging.error("LLMBundle.chat can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, used_tokens))
  304. if self.langfuse:
  305. generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
  306. return txt
  307. def chat_streamly(self, system, history, gen_conf):
  308. if self.langfuse:
  309. generation = self.trace.generation(name="chat_streamly", model=self.llm_name, input={"system": system, "history": history})
  310. ans = ""
  311. chat_streamly = self.mdl.chat_streamly
  312. total_tokens = 0
  313. if self.is_tools and self.mdl.is_tools:
  314. chat_streamly = self.mdl.chat_streamly_with_tools
  315. for txt in chat_streamly(system, history, gen_conf):
  316. if isinstance(txt, int):
  317. total_tokens = txt
  318. if self.langfuse:
  319. generation.end(output={"output": ans})
  320. break
  321. if txt.endswith("</think>"):
  322. ans = ans.rstrip("</think>")
  323. ans += txt
  324. yield ans
  325. if total_tokens > 0:
  326. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, txt, self.llm_name):
  327. logging.error("LLMBundle.chat_streamly can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name, txt))