Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

conversation_app.py 13KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import re
  17. from flask import request
  18. from flask_login import login_required
  19. from api.db.services.dialog_service import DialogService, ConversationService
  20. from api.db import LLMType
  21. from api.db.services.knowledgebase_service import KnowledgebaseService
  22. from api.db.services.llm_service import LLMService, LLMBundle
  23. from api.settings import access_logger, stat_logger, retrievaler, chat_logger
  24. from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
  25. from api.utils import get_uuid
  26. from api.utils.api_utils import get_json_result
  27. from rag.app.resume import forbidden_select_fields4resume
  28. from rag.nlp.search import index_name
  29. from rag.utils import num_tokens_from_string, encoder, rmSpace
  30. @manager.route('/set', methods=['POST'])
  31. @login_required
  32. def set_conversation():
  33. req = request.json
  34. conv_id = req.get("conversation_id")
  35. if conv_id:
  36. del req["conversation_id"]
  37. try:
  38. if not ConversationService.update_by_id(conv_id, req):
  39. return get_data_error_result(retmsg="Conversation not found!")
  40. e, conv = ConversationService.get_by_id(conv_id)
  41. if not e:
  42. return get_data_error_result(
  43. retmsg="Fail to update a conversation!")
  44. conv = conv.to_dict()
  45. return get_json_result(data=conv)
  46. except Exception as e:
  47. return server_error_response(e)
  48. try:
  49. e, dia = DialogService.get_by_id(req["dialog_id"])
  50. if not e:
  51. return get_data_error_result(retmsg="Dialog not found")
  52. conv = {
  53. "id": get_uuid(),
  54. "dialog_id": req["dialog_id"],
  55. "name": req.get("name", "New conversation"),
  56. "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
  57. }
  58. ConversationService.save(**conv)
  59. e, conv = ConversationService.get_by_id(conv["id"])
  60. if not e:
  61. return get_data_error_result(retmsg="Fail to new a conversation!")
  62. conv = conv.to_dict()
  63. return get_json_result(data=conv)
  64. except Exception as e:
  65. return server_error_response(e)
  66. @manager.route('/get', methods=['GET'])
  67. @login_required
  68. def get():
  69. conv_id = request.args["conversation_id"]
  70. try:
  71. e, conv = ConversationService.get_by_id(conv_id)
  72. if not e:
  73. return get_data_error_result(retmsg="Conversation not found!")
  74. conv = conv.to_dict()
  75. return get_json_result(data=conv)
  76. except Exception as e:
  77. return server_error_response(e)
  78. @manager.route('/rm', methods=['POST'])
  79. @login_required
  80. def rm():
  81. conv_ids = request.json["conversation_ids"]
  82. try:
  83. for cid in conv_ids:
  84. ConversationService.delete_by_id(cid)
  85. return get_json_result(data=True)
  86. except Exception as e:
  87. return server_error_response(e)
  88. @manager.route('/list', methods=['GET'])
  89. @login_required
  90. def list_convsersation():
  91. dialog_id = request.args["dialog_id"]
  92. try:
  93. convs = ConversationService.query(dialog_id=dialog_id, order_by=ConversationService.model.create_time, reverse=True)
  94. convs = [d.to_dict() for d in convs]
  95. return get_json_result(data=convs)
  96. except Exception as e:
  97. return server_error_response(e)
  98. def message_fit_in(msg, max_length=4000):
  99. def count():
  100. nonlocal msg
  101. tks_cnts = []
  102. for m in msg: tks_cnts.append({"role": m["role"], "count": num_tokens_from_string(m["content"])})
  103. total = 0
  104. for m in tks_cnts: total += m["count"]
  105. return total
  106. c = count()
  107. if c < max_length: return c, msg
  108. msg_ = [m for m in msg[:-1] if m.role == "system"]
  109. msg_.append(msg[-1])
  110. msg = msg_
  111. c = count()
  112. if c < max_length: return c, msg
  113. ll = num_tokens_from_string(msg_[0].content)
  114. l = num_tokens_from_string(msg_[-1].content)
  115. if ll / (ll + l) > 0.8:
  116. m = msg_[0].content
  117. m = encoder.decode(encoder.encode(m)[:max_length - l])
  118. msg[0].content = m
  119. return max_length, msg
  120. m = msg_[1].content
  121. m = encoder.decode(encoder.encode(m)[:max_length - l])
  122. msg[1].content = m
  123. return max_length, msg
  124. @manager.route('/completion', methods=['POST'])
  125. @login_required
  126. @validate_request("conversation_id", "messages")
  127. def completion():
  128. req = request.json
  129. msg = []
  130. for m in req["messages"]:
  131. if m["role"] == "system": continue
  132. if m["role"] == "assistant" and not msg: continue
  133. msg.append({"role": m["role"], "content": m["content"]})
  134. try:
  135. e, conv = ConversationService.get_by_id(req["conversation_id"])
  136. if not e:
  137. return get_data_error_result(retmsg="Conversation not found!")
  138. conv.message.append(msg[-1])
  139. e, dia = DialogService.get_by_id(conv.dialog_id)
  140. if not e:
  141. return get_data_error_result(retmsg="Dialog not found!")
  142. del req["conversation_id"]
  143. del req["messages"]
  144. ans = chat(dia, msg, **req)
  145. if not conv.reference: conv.reference = []
  146. conv.reference.append(ans["reference"])
  147. conv.message.append({"role": "assistant", "content": ans["answer"]})
  148. ConversationService.update_by_id(conv.id, conv.to_dict())
  149. return get_json_result(data=ans)
  150. except Exception as e:
  151. return server_error_response(e)
  152. def chat(dialog, messages, **kwargs):
  153. assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
  154. llm = LLMService.query(llm_name=dialog.llm_id)
  155. if not llm:
  156. raise LookupError("LLM(%s) not found" % dialog.llm_id)
  157. llm = llm[0]
  158. questions = [m["content"] for m in messages if m["role"] == "user"]
  159. embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING)
  160. chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
  161. field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
  162. ## try to use sql if field mapping is good to go
  163. if field_map:
  164. chat_logger.info("Use SQL to retrieval:{}".format(questions[-1]))
  165. markdown_tbl, chunks = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl)
  166. if markdown_tbl:
  167. return {"answer": markdown_tbl, "reference": {"chunks": chunks, "doc_aggs": []}}
  168. prompt_config = dialog.prompt_config
  169. for p in prompt_config["parameters"]:
  170. if p["key"] == "knowledge": continue
  171. if p["key"] not in kwargs and not p["optional"]: raise KeyError("Miss parameter: " + p["key"])
  172. if p["key"] not in kwargs:
  173. prompt_config["system"] = prompt_config["system"].replace("{%s}" % p["key"], " ")
  174. for _ in range(len(questions)//2):
  175. questions.append(questions[-1])
  176. if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
  177. kbinfos = {"total":0, "chunks":[],"doc_aggs":[]}
  178. else:
  179. kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
  180. dialog.similarity_threshold,
  181. dialog.vector_similarity_weight, top=1024, aggs=False)
  182. knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
  183. chat_logger.info("{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
  184. if not knowledges and prompt_config.get("empty_response"):
  185. return {"answer": prompt_config["empty_response"], "reference": kbinfos}
  186. kwargs["knowledge"] = "\n".join(knowledges)
  187. gen_conf = dialog.llm_setting
  188. msg = [{"role": m["role"], "content": m["content"]} for m in messages if m["role"] != "system"]
  189. used_token_count, msg = message_fit_in(msg, int(llm.max_tokens * 0.97))
  190. if "max_tokens" in gen_conf:
  191. gen_conf["max_tokens"] = min(gen_conf["max_tokens"], llm.max_tokens - used_token_count)
  192. answer = chat_mdl.chat(prompt_config["system"].format(**kwargs), msg, gen_conf)
  193. chat_logger.info("User: {}|Assistant: {}".format(msg[-1]["content"], answer))
  194. if knowledges:
  195. answer, idx = retrievaler.insert_citations(answer,
  196. [ck["content_ltks"] for ck in kbinfos["chunks"]],
  197. [ck["vector"] for ck in kbinfos["chunks"]],
  198. embd_mdl,
  199. tkweight=1 - dialog.vector_similarity_weight,
  200. vtweight=dialog.vector_similarity_weight)
  201. idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
  202. kbinfos["doc_aggs"] = [d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
  203. for c in kbinfos["chunks"]:
  204. if c.get("vector"): del c["vector"]
  205. return {"answer": answer, "reference": kbinfos}
  206. def use_sql(question, field_map, tenant_id, chat_mdl):
  207. sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据用户的问题列表,写出最后一个问题对应的SQL。"
  208. user_promt = """
  209. 表名:{};
  210. 数据库表字段说明如下:
  211. {}
  212. 问题如下:
  213. {}
  214. 请写出SQL, 且只要SQL,不要有其他说明及文字。
  215. """.format(
  216. index_name(tenant_id),
  217. "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
  218. question
  219. )
  220. tried_times = 0
  221. def get_table():
  222. nonlocal sys_prompt, user_promt, question, tried_times
  223. sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {"temperature": 0.06})
  224. print(user_promt, sql)
  225. chat_logger.info(f"“{question}”==>{user_promt} get SQL: {sql}")
  226. sql = re.sub(r"[\r\n]+", " ", sql.lower())
  227. sql = re.sub(r".*select ", "select ", sql.lower())
  228. sql = re.sub(r" +", " ", sql)
  229. sql = re.sub(r"([;;]|```).*", "", sql)
  230. if sql[:len("select ")] != "select ":
  231. return None, None
  232. if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()):
  233. if sql[:len("select *")] != "select *":
  234. sql = "select doc_id,docnm_kwd," + sql[6:]
  235. else:
  236. flds = []
  237. for k in field_map.keys():
  238. if k in forbidden_select_fields4resume:continue
  239. if len(flds) > 11:break
  240. flds.append(k)
  241. sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
  242. print(f"“{question}” get SQL(refined): {sql}")
  243. chat_logger.info(f"“{question}” get SQL(refined): {sql}")
  244. tried_times += 1
  245. return retrievaler.sql_retrieval(sql, format="json"), sql
  246. tbl, sql = get_table()
  247. if tbl is None:
  248. return None, None
  249. if tbl.get("error") and tried_times <= 2:
  250. user_promt = """
  251. 表名:{};
  252. 数据库表字段说明如下:
  253. {}
  254. 问题如下:
  255. {}
  256. 你上一次给出的错误SQL如下:
  257. {}
  258. 后台报错如下:
  259. {}
  260. 请纠正SQL中的错误再写一遍,且只要SQL,不要有其他说明及文字。
  261. """.format(
  262. index_name(tenant_id),
  263. "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
  264. question, sql, tbl["error"]
  265. )
  266. tbl, sql = get_table()
  267. chat_logger.info("TRY it again: {}".format(sql))
  268. chat_logger.info("GET table: {}".format(tbl))
  269. print(tbl)
  270. if tbl.get("error") or len(tbl["rows"]) == 0: return None, None
  271. docid_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "doc_id"])
  272. docnm_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "docnm_kwd"])
  273. clmn_idx = [ii for ii in range(len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)]
  274. # compose markdown table
  275. clmns = "|"+"|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"], tbl["columns"][i]["name"])) for i in clmn_idx]) + ("|原文|" if docid_idx and docid_idx else "|")
  276. line = "|"+"|".join(["------" for _ in range(len(clmn_idx))]) + ("|------|" if docid_idx and docid_idx else "")
  277. rows = ["|"+"|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") + "|" for r in tbl["rows"]]
  278. if not docid_idx or not docnm_idx:
  279. chat_logger.warning("SQL missing field: " + sql)
  280. return "\n".join([clmns, line, "\n".join(rows)]), []
  281. rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
  282. rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)
  283. docid_idx = list(docid_idx)[0]
  284. docnm_idx = list(docnm_idx)[0]
  285. return "\n".join([clmns, line, rows]), [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]]