| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393 | 
							- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import datetime
 - import json
 - import re
 - 
 - import xxhash
 - from flask import request
 - from flask_login import current_user, login_required
 - 
 - from api import settings
 - from api.db import LLMType, ParserType
 - from api.db.services.document_service import DocumentService
 - from api.db.services.knowledgebase_service import KnowledgebaseService
 - from api.db.services.llm_service import LLMBundle
 - from api.db.services.user_service import UserTenantService
 - from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request
 - from rag.app.qa import beAdoc, rmPrefix
 - from rag.app.tag import label_question
 - from rag.nlp import rag_tokenizer, search
 - from rag.prompts import cross_languages, keyword_extraction
 - from rag.settings import PAGERANK_FLD
 - from rag.utils import rmSpace
 - 
 - 
 - @manager.route('/list', methods=['POST'])  # noqa: F821
 - @login_required
 - @validate_request("doc_id")
 - def list_chunk():
 -     req = request.json
 -     doc_id = req["doc_id"]
 -     page = int(req.get("page", 1))
 -     size = int(req.get("size", 30))
 -     question = req.get("keywords", "")
 -     try:
 -         tenant_id = DocumentService.get_tenant_id(req["doc_id"])
 -         if not tenant_id:
 -             return get_data_error_result(message="Tenant not found!")
 -         e, doc = DocumentService.get_by_id(doc_id)
 -         if not e:
 -             return get_data_error_result(message="Document not found!")
 -         kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
 -         query = {
 -             "doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
 -         }
 -         if "available_int" in req:
 -             query["available_int"] = int(req["available_int"])
 -         sres = settings.retrievaler.search(query, search.index_name(tenant_id), kb_ids, highlight=True)
 -         res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
 -         for id in sres.ids:
 -             d = {
 -                 "chunk_id": id,
 -                 "content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[
 -                     id].get(
 -                     "content_with_weight", ""),
 -                 "doc_id": sres.field[id]["doc_id"],
 -                 "docnm_kwd": sres.field[id]["docnm_kwd"],
 -                 "important_kwd": sres.field[id].get("important_kwd", []),
 -                 "question_kwd": sres.field[id].get("question_kwd", []),
 -                 "image_id": sres.field[id].get("img_id", ""),
 -                 "available_int": int(sres.field[id].get("available_int", 1)),
 -                 "positions": sres.field[id].get("position_int", []),
 -             }
 -             assert isinstance(d["positions"], list)
 -             assert len(d["positions"]) == 0 or (isinstance(d["positions"][0], list) and len(d["positions"][0]) == 5)
 -             res["chunks"].append(d)
 -         return get_json_result(data=res)
 -     except Exception as e:
 -         if str(e).find("not_found") > 0:
 -             return get_json_result(data=False, message='No chunk found!',
 -                                    code=settings.RetCode.DATA_ERROR)
 -         return server_error_response(e)
 - 
 - 
 - @manager.route('/get', methods=['GET'])  # noqa: F821
 - @login_required
 - def get():
 -     chunk_id = request.args["chunk_id"]
 -     try:
 -         tenants = UserTenantService.query(user_id=current_user.id)
 -         if not tenants:
 -             return get_data_error_result(message="Tenant not found!")
 -         for tenant in tenants:
 -             kb_ids = KnowledgebaseService.get_kb_ids(tenant.tenant_id)
 -             chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant.tenant_id), kb_ids)
 -             if chunk:
 -                 break
 -         if chunk is None:
 -             return server_error_response(Exception("Chunk not found"))
 - 
 -         k = []
 -         for n in chunk.keys():
 -             if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
 -                 k.append(n)
 -         for n in k:
 -             del chunk[n]
 - 
 -         return get_json_result(data=chunk)
 -     except Exception as e:
 -         if str(e).find("NotFoundError") >= 0:
 -             return get_json_result(data=False, message='Chunk not found!',
 -                                    code=settings.RetCode.DATA_ERROR)
 -         return server_error_response(e)
 - 
 - 
 - @manager.route('/set', methods=['POST'])  # noqa: F821
 - @login_required
 - @validate_request("doc_id", "chunk_id", "content_with_weight")
 - def set():
 -     req = request.json
 -     d = {
 -         "id": req["chunk_id"],
 -         "content_with_weight": req["content_with_weight"]}
 -     d["content_ltks"] = rag_tokenizer.tokenize(req["content_with_weight"])
 -     d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
 -     if "important_kwd" in req:
 -         if not isinstance(req["important_kwd"], list):
 -             return get_data_error_result(message="`important_kwd` should be a list")
 -         d["important_kwd"] = req["important_kwd"]
 -         d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_kwd"]))
 -     if "question_kwd" in req:
 -         if not isinstance(req["question_kwd"], list):
 -             return get_data_error_result(message="`question_kwd` should be a list")
 -         d["question_kwd"] = req["question_kwd"]
 -         d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["question_kwd"]))
 -     if "tag_kwd" in req:
 -         d["tag_kwd"] = req["tag_kwd"]
 -     if "tag_feas" in req:
 -         d["tag_feas"] = req["tag_feas"]
 -     if "available_int" in req:
 -         d["available_int"] = req["available_int"]
 - 
 -     try:
 -         tenant_id = DocumentService.get_tenant_id(req["doc_id"])
 -         if not tenant_id:
 -             return get_data_error_result(message="Tenant not found!")
 - 
 -         embd_id = DocumentService.get_embd_id(req["doc_id"])
 -         embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_id)
 - 
 -         e, doc = DocumentService.get_by_id(req["doc_id"])
 -         if not e:
 -             return get_data_error_result(message="Document not found!")
 - 
 -         if doc.parser_id == ParserType.QA:
 -             arr = [
 -                 t for t in re.split(
 -                     r"[\n\t]",
 -                     req["content_with_weight"]) if len(t) > 1]
 -             q, a = rmPrefix(arr[0]), rmPrefix("\n".join(arr[1:]))
 -             d = beAdoc(d, q, a, not any(
 -                 [rag_tokenizer.is_chinese(t) for t in q + a]))
 - 
 -         v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d.get("question_kwd") else "\n".join(d["question_kwd"])])
 -         v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
 -         d["q_%d_vec" % len(v)] = v.tolist()
 -         settings.docStoreConn.update({"id": req["chunk_id"]}, d, search.index_name(tenant_id), doc.kb_id)
 -         return get_json_result(data=True)
 -     except Exception as e:
 -         return server_error_response(e)
 - 
 - 
 - @manager.route('/switch', methods=['POST'])  # noqa: F821
 - @login_required
 - @validate_request("chunk_ids", "available_int", "doc_id")
 - def switch():
 -     req = request.json
 -     try:
 -         e, doc = DocumentService.get_by_id(req["doc_id"])
 -         if not e:
 -             return get_data_error_result(message="Document not found!")
 -         for cid in req["chunk_ids"]:
 -             if not settings.docStoreConn.update({"id": cid},
 -                                                 {"available_int": int(req["available_int"])},
 -                                                 search.index_name(DocumentService.get_tenant_id(req["doc_id"])),
 -                                                 doc.kb_id):
 -                 return get_data_error_result(message="Index updating failure")
 -         return get_json_result(data=True)
 -     except Exception as e:
 -         return server_error_response(e)
 - 
 - 
 - @manager.route('/rm', methods=['POST'])  # noqa: F821
 - @login_required
 - @validate_request("chunk_ids", "doc_id")
 - def rm():
 -     from rag.utils.storage_factory import STORAGE_IMPL
 -     req = request.json
 -     try:
 -         e, doc = DocumentService.get_by_id(req["doc_id"])
 -         if not e:
 -             return get_data_error_result(message="Document not found!")
 -         if not settings.docStoreConn.delete({"id": req["chunk_ids"]},
 -                                             search.index_name(DocumentService.get_tenant_id(req["doc_id"])),
 -                                             doc.kb_id):
 -             return get_data_error_result(message="Chunk deleting failure")
 -         deleted_chunk_ids = req["chunk_ids"]
 -         chunk_number = len(deleted_chunk_ids)
 -         DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
 -         for cid in deleted_chunk_ids:
 -             if STORAGE_IMPL.obj_exist(doc.kb_id, cid):
 -                 STORAGE_IMPL.rm(doc.kb_id, cid)
 -         return get_json_result(data=True)
 -     except Exception as e:
 -         return server_error_response(e)
 - 
 - 
 - @manager.route('/create', methods=['POST'])  # noqa: F821
 - @login_required
 - @validate_request("doc_id", "content_with_weight")
 - def create():
 -     req = request.json
 -     chunck_id = xxhash.xxh64((req["content_with_weight"] + req["doc_id"]).encode("utf-8")).hexdigest()
 -     d = {"id": chunck_id, "content_ltks": rag_tokenizer.tokenize(req["content_with_weight"]),
 -          "content_with_weight": req["content_with_weight"]}
 -     d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
 -     d["important_kwd"] = req.get("important_kwd", [])
 -     if not isinstance(d["important_kwd"], list):
 -         return get_data_error_result(message="`important_kwd` is required to be a list")
 -     d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"]))
 -     d["question_kwd"] = req.get("question_kwd", [])
 -     if not isinstance(d["question_kwd"], list):
 -         return get_data_error_result(message="`question_kwd` is required to be a list")
 -     d["question_tks"] = rag_tokenizer.tokenize("\n".join(d["question_kwd"]))
 -     d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
 -     d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
 -     if "tag_feas" in req:
 -         d["tag_feas"] = req["tag_feas"]
 -     if "tag_feas" in req:
 -         d["tag_feas"] = req["tag_feas"]
 - 
 -     try:
 -         e, doc = DocumentService.get_by_id(req["doc_id"])
 -         if not e:
 -             return get_data_error_result(message="Document not found!")
 -         d["kb_id"] = [doc.kb_id]
 -         d["docnm_kwd"] = doc.name
 -         d["title_tks"] = rag_tokenizer.tokenize(doc.name)
 -         d["doc_id"] = doc.id
 - 
 -         tenant_id = DocumentService.get_tenant_id(req["doc_id"])
 -         if not tenant_id:
 -             return get_data_error_result(message="Tenant not found!")
 - 
 -         e, kb = KnowledgebaseService.get_by_id(doc.kb_id)
 -         if not e:
 -             return get_data_error_result(message="Knowledgebase not found!")
 -         if kb.pagerank:
 -             d[PAGERANK_FLD] = kb.pagerank
 - 
 -         embd_id = DocumentService.get_embd_id(req["doc_id"])
 -         embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING.value, embd_id)
 - 
 -         v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
 -         v = 0.1 * v[0] + 0.9 * v[1]
 -         d["q_%d_vec" % len(v)] = v.tolist()
 -         settings.docStoreConn.insert([d], search.index_name(tenant_id), doc.kb_id)
 - 
 -         DocumentService.increment_chunk_num(
 -             doc.id, doc.kb_id, c, 1, 0)
 -         return get_json_result(data={"chunk_id": chunck_id})
 -     except Exception as e:
 -         return server_error_response(e)
 - 
 - 
 - @manager.route('/retrieval_test', methods=['POST'])  # noqa: F821
 - @login_required
 - @validate_request("kb_id", "question")
 - def retrieval_test():
 -     req = request.json
 -     page = int(req.get("page", 1))
 -     size = int(req.get("size", 30))
 -     question = req["question"]
 -     kb_ids = req["kb_id"]
 -     if isinstance(kb_ids, str):
 -         kb_ids = [kb_ids]
 -     doc_ids = req.get("doc_ids", [])
 -     similarity_threshold = float(req.get("similarity_threshold", 0.0))
 -     vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
 -     use_kg = req.get("use_kg", False)
 -     top = int(req.get("top_k", 1024))
 -     langs = req.get("cross_languages", [])
 -     tenant_ids = []
 - 
 -     try:
 -         tenants = UserTenantService.query(user_id=current_user.id)
 -         for kb_id in kb_ids:
 -             for tenant in tenants:
 -                 if KnowledgebaseService.query(
 -                         tenant_id=tenant.tenant_id, id=kb_id):
 -                     tenant_ids.append(tenant.tenant_id)
 -                     break
 -             else:
 -                 return get_json_result(
 -                     data=False, message='Only owner of knowledgebase authorized for this operation.',
 -                     code=settings.RetCode.OPERATING_ERROR)
 - 
 -         e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
 -         if not e:
 -             return get_data_error_result(message="Knowledgebase not found!")
 - 
 -         if langs:
 -             question = cross_languages(kb.tenant_id, None, question, langs)
 - 
 -         embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
 - 
 -         rerank_mdl = None
 -         if req.get("rerank_id"):
 -             rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
 - 
 -         if req.get("keyword", False):
 -             chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
 -             question += keyword_extraction(chat_mdl, question)
 - 
 -         labels = label_question(question, [kb])
 -         ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
 -                                similarity_threshold, vector_similarity_weight, top,
 -                                doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"),
 -                                rank_feature=labels
 -                                )
 -         if use_kg:
 -             ck = settings.kg_retrievaler.retrieval(question,
 -                                                    tenant_ids,
 -                                                    kb_ids,
 -                                                    embd_mdl,
 -                                                    LLMBundle(kb.tenant_id, LLMType.CHAT))
 -             if ck["content_with_weight"]:
 -                 ranks["chunks"].insert(0, ck)
 - 
 -         for c in ranks["chunks"]:
 -             c.pop("vector", None)
 -         ranks["labels"] = labels
 - 
 -         return get_json_result(data=ranks)
 -     except Exception as e:
 -         if str(e).find("not_found") > 0:
 -             return get_json_result(data=False, message='No chunk found! Check the chunk status please!',
 -                                    code=settings.RetCode.DATA_ERROR)
 -         return server_error_response(e)
 - 
 - 
 - @manager.route('/knowledge_graph', methods=['GET'])  # noqa: F821
 - @login_required
 - def knowledge_graph():
 -     doc_id = request.args["doc_id"]
 -     tenant_id = DocumentService.get_tenant_id(doc_id)
 -     kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
 -     req = {
 -         "doc_ids": [doc_id],
 -         "knowledge_graph_kwd": ["graph", "mind_map"]
 -     }
 -     sres = settings.retrievaler.search(req, search.index_name(tenant_id), kb_ids)
 -     obj = {"graph": {}, "mind_map": {}}
 -     for id in sres.ids[:2]:
 -         ty = sres.field[id]["knowledge_graph_kwd"]
 -         try:
 -             content_json = json.loads(sres.field[id]["content_with_weight"])
 -         except Exception:
 -             continue
 - 
 -         if ty == 'mind_map':
 -             node_dict = {}
 - 
 -             def repeat_deal(content_json, node_dict):
 -                 if 'id' in content_json:
 -                     if content_json['id'] in node_dict:
 -                         node_name = content_json['id']
 -                         content_json['id'] += f"({node_dict[content_json['id']]})"
 -                         node_dict[node_name] += 1
 -                     else:
 -                         node_dict[content_json['id']] = 1
 -                 if 'children' in content_json and content_json['children']:
 -                     for item in content_json['children']:
 -                         repeat_deal(item, node_dict)
 - 
 -             repeat_deal(content_json, node_dict)
 - 
 -         obj[ty] = content_json
 - 
 -     return get_json_result(data=obj)
 
 
  |