Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

llm_app.py 13KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. from flask import request
  17. from flask_login import login_required, current_user
  18. from api.db.services.llm_service import LLMFactoriesService, TenantLLMService, LLMService
  19. from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
  20. from api.db import StatusEnum, LLMType
  21. from api.db.db_models import TenantLLM
  22. from api.utils.api_utils import get_json_result
  23. from rag.llm import EmbeddingModel, ChatModel, RerankModel, CvModel, TTSModel
  24. import requests
  25. @manager.route('/factories', methods=['GET'])
  26. @login_required
  27. def factories():
  28. try:
  29. fac = LLMFactoriesService.get_all()
  30. fac = [f.to_dict() for f in fac if f.name not in ["Youdao", "FastEmbed", "BAAI"]]
  31. llms = LLMService.get_all()
  32. mdl_types = {}
  33. for m in llms:
  34. if m.status != StatusEnum.VALID.value:
  35. continue
  36. if m.fid not in mdl_types:
  37. mdl_types[m.fid] = set([])
  38. mdl_types[m.fid].add(m.model_type)
  39. for f in fac:
  40. f["model_types"] = list(mdl_types.get(f["name"], []))
  41. return get_json_result(data=fac)
  42. except Exception as e:
  43. return server_error_response(e)
  44. @manager.route('/set_api_key', methods=['POST'])
  45. @login_required
  46. @validate_request("llm_factory", "api_key")
  47. def set_api_key():
  48. req = request.json
  49. # test if api key works
  50. chat_passed, embd_passed, rerank_passed = False, False, False
  51. factory = req["llm_factory"]
  52. msg = ""
  53. for llm in LLMService.query(fid=factory)[:3]:
  54. if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
  55. mdl = EmbeddingModel[factory](
  56. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  57. try:
  58. arr, tc = mdl.encode(["Test if the api key is available"])
  59. if len(arr[0]) == 0:
  60. raise Exception("Fail")
  61. embd_passed = True
  62. except Exception as e:
  63. msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
  64. elif not chat_passed and llm.model_type == LLMType.CHAT.value:
  65. mdl = ChatModel[factory](
  66. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  67. try:
  68. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}],
  69. {"temperature": 0.9,'max_tokens':50})
  70. if m.find("**ERROR**") >=0:
  71. raise Exception(m)
  72. except Exception as e:
  73. msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
  74. e)
  75. chat_passed = True
  76. elif not rerank_passed and llm.model_type == LLMType.RERANK:
  77. mdl = RerankModel[factory](
  78. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  79. try:
  80. arr, tc = mdl.similarity("What's the weather?", ["Is it sunny today?"])
  81. if len(arr) == 0 or tc == 0:
  82. raise Exception("Fail")
  83. except Exception as e:
  84. msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
  85. e)
  86. rerank_passed = True
  87. if msg:
  88. return get_data_error_result(retmsg=msg)
  89. llm = {
  90. "api_key": req["api_key"],
  91. "api_base": req.get("base_url", "")
  92. }
  93. for n in ["model_type", "llm_name"]:
  94. if n in req:
  95. llm[n] = req[n]
  96. if not TenantLLMService.filter_update(
  97. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory], llm):
  98. for llm in LLMService.query(fid=factory):
  99. TenantLLMService.save(
  100. tenant_id=current_user.id,
  101. llm_factory=factory,
  102. llm_name=llm.llm_name,
  103. model_type=llm.model_type,
  104. api_key=req["api_key"],
  105. api_base=req.get("base_url", "")
  106. )
  107. return get_json_result(data=True)
  108. @manager.route('/add_llm', methods=['POST'])
  109. @login_required
  110. @validate_request("llm_factory")
  111. def add_llm():
  112. req = request.json
  113. factory = req["llm_factory"]
  114. if factory == "VolcEngine":
  115. # For VolcEngine, due to its special authentication method
  116. # Assemble ark_api_key endpoint_id into api_key
  117. llm_name = req["llm_name"]
  118. api_key = '{' + f'"ark_api_key": "{req.get("ark_api_key", "")}", ' \
  119. f'"ep_id": "{req.get("endpoint_id", "")}", ' + '}'
  120. elif factory == "Tencent Hunyuan":
  121. api_key = '{' + f'"hunyuan_sid": "{req.get("hunyuan_sid", "")}", ' \
  122. f'"hunyuan_sk": "{req.get("hunyuan_sk", "")}"' + '}'
  123. req["api_key"] = api_key
  124. return set_api_key()
  125. elif factory == "Tencent Cloud":
  126. api_key = '{' + f'"tencent_cloud_sid": "{req.get("tencent_cloud_sid", "")}", ' \
  127. f'"tencent_cloud_sk": "{req.get("tencent_cloud_sk", "")}"' + '}'
  128. req["api_key"] = api_key
  129. elif factory == "Bedrock":
  130. # For Bedrock, due to its special authentication method
  131. # Assemble bedrock_ak, bedrock_sk, bedrock_region
  132. llm_name = req["llm_name"]
  133. api_key = '{' + f'"bedrock_ak": "{req.get("bedrock_ak", "")}", ' \
  134. f'"bedrock_sk": "{req.get("bedrock_sk", "")}", ' \
  135. f'"bedrock_region": "{req.get("bedrock_region", "")}", ' + '}'
  136. elif factory == "LocalAI":
  137. llm_name = req["llm_name"]+"___LocalAI"
  138. api_key = "xxxxxxxxxxxxxxx"
  139. elif factory == "OpenAI-API-Compatible":
  140. llm_name = req["llm_name"]+"___OpenAI-API"
  141. api_key = req.get("api_key","xxxxxxxxxxxxxxx")
  142. elif factory =="XunFei Spark":
  143. llm_name = req["llm_name"]
  144. api_key = req.get("spark_api_password","xxxxxxxxxxxxxxx")
  145. elif factory == "BaiduYiyan":
  146. llm_name = req["llm_name"]
  147. api_key = '{' + f'"yiyan_ak": "{req.get("yiyan_ak", "")}", ' \
  148. f'"yiyan_sk": "{req.get("yiyan_sk", "")}"' + '}'
  149. elif factory == "Fish Audio":
  150. llm_name = req["llm_name"]
  151. api_key = '{' + f'"fish_audio_ak": "{req.get("fish_audio_ak", "")}", ' \
  152. f'"fish_audio_refid": "{req.get("fish_audio_refid", "59cb5986671546eaa6ca8ae6f29f6d22")}"' + '}'
  153. elif factory == "Google Cloud":
  154. llm_name = req["llm_name"]
  155. api_key = (
  156. "{" + f'"google_project_id": "{req.get("google_project_id", "")}", '
  157. f'"google_region": "{req.get("google_region", "")}", '
  158. f'"google_service_account_key": "{req.get("google_service_account_key", "")}"'
  159. + "}"
  160. )
  161. else:
  162. llm_name = req["llm_name"]
  163. api_key = req.get("api_key","xxxxxxxxxxxxxxx")
  164. llm = {
  165. "tenant_id": current_user.id,
  166. "llm_factory": factory,
  167. "model_type": req["model_type"],
  168. "llm_name": llm_name,
  169. "api_base": req.get("api_base", ""),
  170. "api_key": api_key
  171. }
  172. msg = ""
  173. if llm["model_type"] == LLMType.EMBEDDING.value:
  174. mdl = EmbeddingModel[factory](
  175. key=llm['api_key'],
  176. model_name=llm["llm_name"],
  177. base_url=llm["api_base"])
  178. try:
  179. arr, tc = mdl.encode(["Test if the api key is available"])
  180. if len(arr[0]) == 0 or tc == 0:
  181. raise Exception("Fail")
  182. except Exception as e:
  183. msg += f"\nFail to access embedding model({llm['llm_name']})." + str(e)
  184. elif llm["model_type"] == LLMType.CHAT.value:
  185. mdl = ChatModel[factory](
  186. key=llm['api_key'],
  187. model_name=llm["llm_name"],
  188. base_url=llm["api_base"]
  189. )
  190. try:
  191. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
  192. "temperature": 0.9})
  193. if not tc:
  194. raise Exception(m)
  195. except Exception as e:
  196. msg += f"\nFail to access model({llm['llm_name']})." + str(
  197. e)
  198. elif llm["model_type"] == LLMType.RERANK:
  199. mdl = RerankModel[factory](
  200. key=llm["api_key"],
  201. model_name=llm["llm_name"],
  202. base_url=llm["api_base"]
  203. )
  204. try:
  205. arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!"])
  206. if len(arr) == 0 or tc == 0:
  207. raise Exception("Not known.")
  208. except Exception as e:
  209. msg += f"\nFail to access model({llm['llm_name']})." + str(
  210. e)
  211. elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
  212. mdl = CvModel[factory](
  213. key=llm["api_key"],
  214. model_name=llm["llm_name"],
  215. base_url=llm["api_base"]
  216. )
  217. try:
  218. img_url = (
  219. "https://upload.wikimedia.org/wikipedia/comm"
  220. "ons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/256"
  221. "0px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
  222. )
  223. res = requests.get(img_url)
  224. if res.status_code == 200:
  225. m, tc = mdl.describe(res.content)
  226. if not tc:
  227. raise Exception(m)
  228. else:
  229. pass
  230. except Exception as e:
  231. msg += f"\nFail to access model({llm['llm_name']})." + str(e)
  232. elif llm["model_type"] == LLMType.TTS:
  233. mdl = TTSModel[factory](
  234. key=llm["api_key"], model_name=llm["llm_name"], base_url=llm["api_base"]
  235. )
  236. try:
  237. for resp in mdl.tts("Hello~ Ragflower!"):
  238. pass
  239. except RuntimeError as e:
  240. msg += f"\nFail to access model({llm['llm_name']})." + str(e)
  241. else:
  242. # TODO: check other type of models
  243. pass
  244. if msg:
  245. return get_data_error_result(retmsg=msg)
  246. if not TenantLLMService.filter_update(
  247. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory, TenantLLM.llm_name == llm["llm_name"]], llm):
  248. TenantLLMService.save(**llm)
  249. return get_json_result(data=True)
  250. @manager.route('/delete_llm', methods=['POST'])
  251. @login_required
  252. @validate_request("llm_factory", "llm_name")
  253. def delete_llm():
  254. req = request.json
  255. TenantLLMService.filter_delete(
  256. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"], TenantLLM.llm_name == req["llm_name"]])
  257. return get_json_result(data=True)
  258. @manager.route('/my_llms', methods=['GET'])
  259. @login_required
  260. def my_llms():
  261. try:
  262. res = {}
  263. for o in TenantLLMService.get_my_llms(current_user.id):
  264. if o["llm_factory"] not in res:
  265. res[o["llm_factory"]] = {
  266. "tags": o["tags"],
  267. "llm": []
  268. }
  269. res[o["llm_factory"]]["llm"].append({
  270. "type": o["model_type"],
  271. "name": o["llm_name"],
  272. "used_token": o["used_tokens"]
  273. })
  274. return get_json_result(data=res)
  275. except Exception as e:
  276. return server_error_response(e)
  277. @manager.route('/list', methods=['GET'])
  278. @login_required
  279. def list_app():
  280. model_type = request.args.get("model_type")
  281. try:
  282. objs = TenantLLMService.query(tenant_id=current_user.id)
  283. facts = set([o.to_dict()["llm_factory"] for o in objs if o.api_key])
  284. llms = LLMService.get_all()
  285. llms = [m.to_dict()
  286. for m in llms if m.status == StatusEnum.VALID.value]
  287. for m in llms:
  288. m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in ["Youdao","FastEmbed", "BAAI"]
  289. llm_set = set([m["llm_name"] for m in llms])
  290. for o in objs:
  291. if not o.api_key:continue
  292. if o.llm_name in llm_set:continue
  293. llms.append({"llm_name": o.llm_name, "model_type": o.model_type, "fid": o.llm_factory, "available": True})
  294. res = {}
  295. for m in llms:
  296. if model_type and m["model_type"].find(model_type)<0:
  297. continue
  298. if m["fid"] not in res:
  299. res[m["fid"]] = []
  300. res[m["fid"]].append(m)
  301. return get_json_result(data=res)
  302. except Exception as e:
  303. return server_error_response(e)