選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

task_executor.py 10KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import datetime
  17. import json
  18. import logging
  19. import os
  20. import hashlib
  21. import copy
  22. import random
  23. import re
  24. import sys
  25. import time
  26. import traceback
  27. from functools import partial
  28. from api.db.db_models import close_connection
  29. from rag.settings import database_logger
  30. from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
  31. from multiprocessing import Pool
  32. import numpy as np
  33. from elasticsearch_dsl import Q
  34. from multiprocessing.context import TimeoutError
  35. from api.db.services.task_service import TaskService
  36. from rag.utils import ELASTICSEARCH
  37. from rag.utils import MINIO
  38. from rag.utils import rmSpace, findMaxTm
  39. from rag.nlp import search
  40. from io import BytesIO
  41. import pandas as pd
  42. from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one
  43. from api.db import LLMType, ParserType
  44. from api.db.services.document_service import DocumentService
  45. from api.db.services.llm_service import LLMBundle
  46. from api.utils.file_utils import get_project_base_directory
  47. BATCH_SIZE = 64
  48. FACTORY = {
  49. "general": naive,
  50. ParserType.NAIVE.value: naive,
  51. ParserType.PAPER.value: paper,
  52. ParserType.BOOK.value: book,
  53. ParserType.PRESENTATION.value: presentation,
  54. ParserType.MANUAL.value: manual,
  55. ParserType.LAWS.value: laws,
  56. ParserType.QA.value: qa,
  57. ParserType.TABLE.value: table,
  58. ParserType.RESUME.value: resume,
  59. ParserType.PICTURE.value: picture,
  60. ParserType.ONE.value: one,
  61. }
  62. def set_progress(task_id, from_page=0, to_page=-1,
  63. prog=None, msg="Processing..."):
  64. if prog is not None and prog < 0:
  65. msg = "[ERROR]" + msg
  66. cancel = TaskService.do_cancel(task_id)
  67. if cancel:
  68. msg += " [Canceled]"
  69. prog = -1
  70. if to_page > 0:
  71. if msg:
  72. msg = f"Page({from_page+1}~{to_page+1}): " + msg
  73. d = {"progress_msg": msg}
  74. if prog is not None:
  75. d["progress"] = prog
  76. try:
  77. TaskService.update_progress(task_id, d)
  78. except Exception as e:
  79. cron_logger.error("set_progress:({}), {}".format(task_id, str(e)))
  80. if cancel:
  81. sys.exit()
  82. def collect(comm, mod, tm):
  83. tasks = TaskService.get_tasks(tm, mod, comm)
  84. #print(tasks)
  85. if len(tasks) == 0:
  86. time.sleep(1)
  87. return pd.DataFrame()
  88. tasks = pd.DataFrame(tasks)
  89. mtm = tasks["update_time"].max()
  90. cron_logger.info("TOTAL:{}, To:{}".format(len(tasks), mtm))
  91. return tasks
  92. def get_minio_binary(bucket, name):
  93. global MINIO
  94. return MINIO.get(bucket, name)
  95. def build(row):
  96. from timeit import default_timer as timer
  97. if row["size"] > DOC_MAXIMUM_SIZE:
  98. set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
  99. (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
  100. return []
  101. callback = partial(
  102. set_progress,
  103. row["id"],
  104. row["from_page"],
  105. row["to_page"])
  106. chunker = FACTORY[row["parser_id"].lower()]
  107. pool = Pool(processes=1)
  108. try:
  109. st = timer()
  110. thr = pool.apply_async(get_minio_binary, args=(row["kb_id"], row["location"]))
  111. binary = thr.get(timeout=90)
  112. pool.terminate()
  113. cron_logger.info(
  114. "From minio({}) {}/{}".format(timer()-st, row["location"], row["name"]))
  115. cks = chunker.chunk(row["name"], binary=binary, from_page=row["from_page"],
  116. to_page=row["to_page"], lang=row["language"], callback=callback,
  117. kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
  118. cron_logger.info(
  119. "Chunkking({}) {}/{}".format(timer()-st, row["location"], row["name"]))
  120. except TimeoutError as e:
  121. callback(-1, f"Internal server error: Fetch file timeout. Could you try it again.")
  122. cron_logger.error(
  123. "Chunkking {}/{}: Fetch file timeout.".format(row["location"], row["name"]))
  124. return
  125. except Exception as e:
  126. if re.search("(No such file|not found)", str(e)):
  127. callback(-1, "Can not find file <%s>" % row["name"])
  128. else:
  129. callback(-1, f"Internal server error: %s" %
  130. str(e).replace("'", ""))
  131. pool.terminate()
  132. traceback.print_exc()
  133. cron_logger.error(
  134. "Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))
  135. return
  136. docs = []
  137. doc = {
  138. "doc_id": row["doc_id"],
  139. "kb_id": [str(row["kb_id"])]
  140. }
  141. for ck in cks:
  142. d = copy.deepcopy(doc)
  143. d.update(ck)
  144. md5 = hashlib.md5()
  145. md5.update((ck["content_with_weight"] +
  146. str(d["doc_id"])).encode("utf-8"))
  147. d["_id"] = md5.hexdigest()
  148. d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
  149. d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
  150. if not d.get("image"):
  151. docs.append(d)
  152. continue
  153. output_buffer = BytesIO()
  154. if isinstance(d["image"], bytes):
  155. output_buffer = BytesIO(d["image"])
  156. else:
  157. d["image"].save(output_buffer, format='JPEG')
  158. MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
  159. d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
  160. del d["image"]
  161. docs.append(d)
  162. return docs
  163. def init_kb(row):
  164. idxnm = search.index_name(row["tenant_id"])
  165. if ELASTICSEARCH.indexExist(idxnm):
  166. return
  167. return ELASTICSEARCH.createIdx(idxnm, json.load(
  168. open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
  169. def embedding(docs, mdl, parser_config={}, callback=None):
  170. batch_size = 32
  171. tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [
  172. re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", d["content_with_weight"]) for d in docs]
  173. tk_count = 0
  174. if len(tts) == len(cnts):
  175. tts_ = np.array([])
  176. for i in range(0, len(tts), batch_size):
  177. vts, c = mdl.encode(tts[i: i + batch_size])
  178. if len(tts_) == 0:
  179. tts_ = vts
  180. else:
  181. tts_ = np.concatenate((tts_, vts), axis=0)
  182. tk_count += c
  183. callback(prog=0.6 + 0.1 * (i + 1) / len(tts), msg="")
  184. tts = tts_
  185. cnts_ = np.array([])
  186. for i in range(0, len(cnts), batch_size):
  187. vts, c = mdl.encode(cnts[i: i + batch_size])
  188. if len(cnts_) == 0:
  189. cnts_ = vts
  190. else:
  191. cnts_ = np.concatenate((cnts_, vts), axis=0)
  192. tk_count += c
  193. callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="")
  194. cnts = cnts_
  195. title_w = float(parser_config.get("filename_embd_weight", 0.1))
  196. vects = (title_w * tts + (1 - title_w) *
  197. cnts) if len(tts) == len(cnts) else cnts
  198. assert len(vects) == len(docs)
  199. for i, d in enumerate(docs):
  200. v = vects[i].tolist()
  201. d["q_%d_vec" % len(v)] = v
  202. return tk_count
  203. def main(comm, mod):
  204. tm_fnm = os.path.join(
  205. get_project_base_directory(),
  206. "rag/res",
  207. f"{comm}-{mod}.tm")
  208. tm = findMaxTm(tm_fnm)
  209. rows = collect(comm, mod, tm)
  210. if len(rows) == 0:
  211. return
  212. tmf = open(tm_fnm, "a+")
  213. for _, r in rows.iterrows():
  214. callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
  215. #callback(random.random()/10., "Task has been received.")
  216. try:
  217. embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING, llm_name=r["embd_id"], lang=r["language"])
  218. except Exception as e:
  219. traceback.print_stack(e)
  220. callback(prog=-1, msg=str(e))
  221. continue
  222. cks = build(r)
  223. if cks is None:
  224. continue
  225. if not cks:
  226. tmf.write(str(r["update_time"]) + "\n")
  227. callback(1., "No chunk! Done!")
  228. continue
  229. # TODO: exception handler
  230. ## set_progress(r["did"], -1, "ERROR: ")
  231. callback(
  232. msg="Finished slicing files(%d). Start to embedding the content." %
  233. len(cks))
  234. try:
  235. tk_count = embedding(cks, embd_mdl, r["parser_config"], callback)
  236. except Exception as e:
  237. callback(-1, "Embedding error:{}".format(str(e)))
  238. cron_logger.error(str(e))
  239. tk_count = 0
  240. callback(msg="Finished embedding! Start to build index!")
  241. init_kb(r)
  242. chunk_count = len(set([c["_id"] for c in cks]))
  243. es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"]))
  244. if es_r:
  245. callback(-1, "Index failure!")
  246. ELASTICSEARCH.deleteByQuery(
  247. Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
  248. cron_logger.error(str(es_r))
  249. else:
  250. if TaskService.do_cancel(r["id"]):
  251. ELASTICSEARCH.deleteByQuery(
  252. Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
  253. continue
  254. callback(1., "Done!")
  255. DocumentService.increment_chunk_num(
  256. r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
  257. cron_logger.info(
  258. "Chunk doc({}), token({}), chunks({})".format(
  259. r["id"], tk_count, len(cks)))
  260. tmf.write(str(r["update_time"]) + "\n")
  261. tmf.close()
  262. if __name__ == "__main__":
  263. peewee_logger = logging.getLogger('peewee')
  264. peewee_logger.propagate = False
  265. peewee_logger.addHandler(database_logger.handlers[0])
  266. peewee_logger.setLevel(database_logger.level)
  267. #from mpi4py import MPI
  268. #comm = MPI.COMM_WORLD
  269. while True:
  270. main(int(sys.argv[2]), int(sys.argv[1]))
  271. close_connection()