您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

llm_app.py 15KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import logging
  17. import json
  18. from flask import request
  19. from flask_login import login_required, current_user
  20. from api.db.services.tenant_llm_service import LLMFactoriesService, TenantLLMService
  21. from api.db.services.llm_service import LLMService
  22. from api import settings
  23. from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
  24. from api.db import StatusEnum, LLMType
  25. from api.db.db_models import TenantLLM
  26. from api.utils.api_utils import get_json_result
  27. from api.utils.base64_image import test_image
  28. from rag.llm import EmbeddingModel, ChatModel, RerankModel, CvModel, TTSModel
  29. @manager.route('/factories', methods=['GET']) # noqa: F821
  30. @login_required
  31. def factories():
  32. try:
  33. fac = LLMFactoriesService.get_all()
  34. fac = [f.to_dict() for f in fac if f.name not in ["Youdao", "FastEmbed", "BAAI"]]
  35. llms = LLMService.get_all()
  36. mdl_types = {}
  37. for m in llms:
  38. if m.status != StatusEnum.VALID.value:
  39. continue
  40. if m.fid not in mdl_types:
  41. mdl_types[m.fid] = set([])
  42. mdl_types[m.fid].add(m.model_type)
  43. for f in fac:
  44. f["model_types"] = list(mdl_types.get(f["name"], [LLMType.CHAT, LLMType.EMBEDDING, LLMType.RERANK,
  45. LLMType.IMAGE2TEXT, LLMType.SPEECH2TEXT, LLMType.TTS]))
  46. return get_json_result(data=fac)
  47. except Exception as e:
  48. return server_error_response(e)
  49. @manager.route('/set_api_key', methods=['POST']) # noqa: F821
  50. @login_required
  51. @validate_request("llm_factory", "api_key")
  52. def set_api_key():
  53. req = request.json
  54. # test if api key works
  55. chat_passed, embd_passed, rerank_passed = False, False, False
  56. factory = req["llm_factory"]
  57. extra = {"provider": factory}
  58. msg = ""
  59. for llm in LLMService.query(fid=factory):
  60. if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
  61. assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
  62. mdl = EmbeddingModel[factory](
  63. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  64. try:
  65. arr, tc = mdl.encode(["Test if the api key is available"])
  66. if len(arr[0]) == 0:
  67. raise Exception("Fail")
  68. embd_passed = True
  69. except Exception as e:
  70. msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
  71. elif not chat_passed and llm.model_type == LLMType.CHAT.value:
  72. assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
  73. mdl = ChatModel[factory](
  74. req["api_key"], llm.llm_name, base_url=req.get("base_url"), **extra)
  75. try:
  76. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}],
  77. {"temperature": 0.9, 'max_tokens': 50})
  78. if m.find("**ERROR**") >= 0:
  79. raise Exception(m)
  80. chat_passed = True
  81. except Exception as e:
  82. msg += f"\nFail to access model({llm.fid}/{llm.llm_name}) using this api key." + str(
  83. e)
  84. elif not rerank_passed and llm.model_type == LLMType.RERANK:
  85. assert factory in RerankModel, f"Re-rank model from {factory} is not supported yet."
  86. mdl = RerankModel[factory](
  87. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  88. try:
  89. arr, tc = mdl.similarity("What's the weather?", ["Is it sunny today?"])
  90. if len(arr) == 0 or tc == 0:
  91. raise Exception("Fail")
  92. rerank_passed = True
  93. logging.debug(f'passed model rerank {llm.llm_name}')
  94. except Exception as e:
  95. msg += f"\nFail to access model({llm.fid}/{llm.llm_name}) using this api key." + str(
  96. e)
  97. if any([embd_passed, chat_passed, rerank_passed]):
  98. msg = ''
  99. break
  100. if msg:
  101. return get_data_error_result(message=msg)
  102. llm_config = {
  103. "api_key": req["api_key"],
  104. "api_base": req.get("base_url", "")
  105. }
  106. for n in ["model_type", "llm_name"]:
  107. if n in req:
  108. llm_config[n] = req[n]
  109. for llm in LLMService.query(fid=factory):
  110. llm_config["max_tokens"]=llm.max_tokens
  111. if not TenantLLMService.filter_update(
  112. [TenantLLM.tenant_id == current_user.id,
  113. TenantLLM.llm_factory == factory,
  114. TenantLLM.llm_name == llm.llm_name],
  115. llm_config):
  116. TenantLLMService.save(
  117. tenant_id=current_user.id,
  118. llm_factory=factory,
  119. llm_name=llm.llm_name,
  120. model_type=llm.model_type,
  121. api_key=llm_config["api_key"],
  122. api_base=llm_config["api_base"],
  123. max_tokens=llm_config["max_tokens"]
  124. )
  125. return get_json_result(data=True)
  126. @manager.route('/add_llm', methods=['POST']) # noqa: F821
  127. @login_required
  128. @validate_request("llm_factory")
  129. def add_llm():
  130. req = request.json
  131. factory = req["llm_factory"]
  132. api_key = req.get("api_key", "x")
  133. llm_name = req.get("llm_name")
  134. def apikey_json(keys):
  135. nonlocal req
  136. return json.dumps({k: req.get(k, "") for k in keys})
  137. if factory == "VolcEngine":
  138. # For VolcEngine, due to its special authentication method
  139. # Assemble ark_api_key endpoint_id into api_key
  140. api_key = apikey_json(["ark_api_key", "endpoint_id"])
  141. elif factory == "Tencent Hunyuan":
  142. req["api_key"] = apikey_json(["hunyuan_sid", "hunyuan_sk"])
  143. return set_api_key()
  144. elif factory == "Tencent Cloud":
  145. req["api_key"] = apikey_json(["tencent_cloud_sid", "tencent_cloud_sk"])
  146. return set_api_key()
  147. elif factory == "Bedrock":
  148. # For Bedrock, due to its special authentication method
  149. # Assemble bedrock_ak, bedrock_sk, bedrock_region
  150. api_key = apikey_json(["bedrock_ak", "bedrock_sk", "bedrock_region"])
  151. elif factory == "LocalAI":
  152. llm_name += "___LocalAI"
  153. elif factory == "HuggingFace":
  154. llm_name += "___HuggingFace"
  155. elif factory == "OpenAI-API-Compatible":
  156. llm_name += "___OpenAI-API"
  157. elif factory == "VLLM":
  158. llm_name += "___VLLM"
  159. elif factory == "XunFei Spark":
  160. if req["model_type"] == "chat":
  161. api_key = req.get("spark_api_password", "")
  162. elif req["model_type"] == "tts":
  163. api_key = apikey_json(["spark_app_id", "spark_api_secret", "spark_api_key"])
  164. elif factory == "BaiduYiyan":
  165. api_key = apikey_json(["yiyan_ak", "yiyan_sk"])
  166. elif factory == "Fish Audio":
  167. api_key = apikey_json(["fish_audio_ak", "fish_audio_refid"])
  168. elif factory == "Google Cloud":
  169. api_key = apikey_json(["google_project_id", "google_region", "google_service_account_key"])
  170. elif factory == "Azure-OpenAI":
  171. api_key = apikey_json(["api_key", "api_version"])
  172. llm = {
  173. "tenant_id": current_user.id,
  174. "llm_factory": factory,
  175. "model_type": req["model_type"],
  176. "llm_name": llm_name,
  177. "api_base": req.get("api_base", ""),
  178. "api_key": api_key,
  179. "max_tokens": req.get("max_tokens")
  180. }
  181. msg = ""
  182. mdl_nm = llm["llm_name"].split("___")[0]
  183. extra = {"provider": factory}
  184. if llm["model_type"] == LLMType.EMBEDDING.value:
  185. assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
  186. mdl = EmbeddingModel[factory](
  187. key=llm['api_key'],
  188. model_name=mdl_nm,
  189. base_url=llm["api_base"])
  190. try:
  191. arr, tc = mdl.encode(["Test if the api key is available"])
  192. if len(arr[0]) == 0:
  193. raise Exception("Fail")
  194. except Exception as e:
  195. msg += f"\nFail to access embedding model({mdl_nm})." + str(e)
  196. elif llm["model_type"] == LLMType.CHAT.value:
  197. assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
  198. mdl = ChatModel[factory](
  199. key=llm['api_key'],
  200. model_name=mdl_nm,
  201. base_url=llm["api_base"],
  202. **extra,
  203. )
  204. try:
  205. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
  206. "temperature": 0.9})
  207. if not tc and m.find("**ERROR**:") >= 0:
  208. raise Exception(m)
  209. except Exception as e:
  210. msg += f"\nFail to access model({factory}/{mdl_nm})." + str(
  211. e)
  212. elif llm["model_type"] == LLMType.RERANK:
  213. assert factory in RerankModel, f"RE-rank model from {factory} is not supported yet."
  214. try:
  215. mdl = RerankModel[factory](
  216. key=llm["api_key"],
  217. model_name=mdl_nm,
  218. base_url=llm["api_base"]
  219. )
  220. arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!", "Ohh, my friend!"])
  221. if len(arr) == 0:
  222. raise Exception("Not known.")
  223. except KeyError:
  224. msg += f"{factory} dose not support this model({factory}/{mdl_nm})"
  225. except Exception as e:
  226. msg += f"\nFail to access model({factory}/{mdl_nm})." + str(
  227. e)
  228. elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
  229. assert factory in CvModel, f"Image to text model from {factory} is not supported yet."
  230. mdl = CvModel[factory](
  231. key=llm["api_key"],
  232. model_name=mdl_nm,
  233. base_url=llm["api_base"]
  234. )
  235. try:
  236. image_data = test_image
  237. m, tc = mdl.describe(image_data)
  238. if not m and not tc:
  239. raise Exception(m)
  240. except Exception as e:
  241. msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)
  242. elif llm["model_type"] == LLMType.TTS:
  243. assert factory in TTSModel, f"TTS model from {factory} is not supported yet."
  244. mdl = TTSModel[factory](
  245. key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"]
  246. )
  247. try:
  248. for resp in mdl.tts("Hello~ Ragflower!"):
  249. pass
  250. except RuntimeError as e:
  251. msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)
  252. else:
  253. # TODO: check other type of models
  254. pass
  255. if msg:
  256. return get_data_error_result(message=msg)
  257. if not TenantLLMService.filter_update(
  258. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory,
  259. TenantLLM.llm_name == llm["llm_name"]], llm):
  260. TenantLLMService.save(**llm)
  261. return get_json_result(data=True)
  262. @manager.route('/delete_llm', methods=['POST']) # noqa: F821
  263. @login_required
  264. @validate_request("llm_factory", "llm_name")
  265. def delete_llm():
  266. req = request.json
  267. TenantLLMService.filter_delete(
  268. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"],
  269. TenantLLM.llm_name == req["llm_name"]])
  270. return get_json_result(data=True)
  271. @manager.route('/delete_factory', methods=['POST']) # noqa: F821
  272. @login_required
  273. @validate_request("llm_factory")
  274. def delete_factory():
  275. req = request.json
  276. TenantLLMService.filter_delete(
  277. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"]])
  278. return get_json_result(data=True)
  279. @manager.route('/my_llms', methods=['GET']) # noqa: F821
  280. @login_required
  281. def my_llms():
  282. try:
  283. include_details = request.args.get('include_details', 'false').lower() == 'true'
  284. if include_details:
  285. res = {}
  286. objs = TenantLLMService.query(tenant_id=current_user.id)
  287. factories = LLMFactoriesService.query(status=StatusEnum.VALID.value)
  288. for o in objs:
  289. o_dict = o.to_dict()
  290. factory_tags = None
  291. for f in factories:
  292. if f.name == o_dict["llm_factory"]:
  293. factory_tags = f.tags
  294. break
  295. if o_dict["llm_factory"] not in res:
  296. res[o_dict["llm_factory"]] = {
  297. "tags": factory_tags,
  298. "llm": []
  299. }
  300. res[o_dict["llm_factory"]]["llm"].append({
  301. "type": o_dict["model_type"],
  302. "name": o_dict["llm_name"],
  303. "used_token": o_dict["used_tokens"],
  304. "api_base": o_dict["api_base"] or "",
  305. "max_tokens": o_dict["max_tokens"] or 8192
  306. })
  307. else:
  308. res = {}
  309. for o in TenantLLMService.get_my_llms(current_user.id):
  310. if o["llm_factory"] not in res:
  311. res[o["llm_factory"]] = {
  312. "tags": o["tags"],
  313. "llm": []
  314. }
  315. res[o["llm_factory"]]["llm"].append({
  316. "type": o["model_type"],
  317. "name": o["llm_name"],
  318. "used_token": o["used_tokens"]
  319. })
  320. return get_json_result(data=res)
  321. except Exception as e:
  322. return server_error_response(e)
  323. @manager.route('/list', methods=['GET']) # noqa: F821
  324. @login_required
  325. def list_app():
  326. self_deployed = ["Youdao", "FastEmbed", "BAAI", "Ollama", "Xinference", "LocalAI", "LM-Studio", "GPUStack"]
  327. weighted = ["Youdao", "FastEmbed", "BAAI"] if settings.LIGHTEN != 0 else []
  328. model_type = request.args.get("model_type")
  329. try:
  330. objs = TenantLLMService.query(tenant_id=current_user.id)
  331. facts = set([o.to_dict()["llm_factory"] for o in objs if o.api_key])
  332. llms = LLMService.get_all()
  333. llms = [m.to_dict()
  334. for m in llms if m.status == StatusEnum.VALID.value and m.fid not in weighted]
  335. for m in llms:
  336. m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in self_deployed
  337. llm_set = set([m["llm_name"] + "@" + m["fid"] for m in llms])
  338. for o in objs:
  339. if o.llm_name + "@" + o.llm_factory in llm_set:
  340. continue
  341. llms.append({"llm_name": o.llm_name, "model_type": o.model_type, "fid": o.llm_factory, "available": True})
  342. res = {}
  343. for m in llms:
  344. if model_type and m["model_type"].find(model_type) < 0:
  345. continue
  346. if m["fid"] not in res:
  347. res[m["fid"]] = []
  348. res[m["fid"]].append(m)
  349. return get_json_result(data=res)
  350. except Exception as e:
  351. return server_error_response(e)