You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

book.py 5.6KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156
  1. import copy
  2. import random
  3. import re
  4. from io import BytesIO
  5. from docx import Document
  6. import numpy as np
  7. from rag.app import bullets_category, BULLET_PATTERN, is_english, tokenize, remove_contents_table
  8. from rag.nlp import huqie
  9. from rag.parser.docx_parser import HuDocxParser
  10. from rag.parser.pdf_parser import HuParser
  11. class Pdf(HuParser):
  12. def __call__(self, filename, binary=None, from_page=0,
  13. to_page=100000, zoomin=3, callback=None):
  14. self.__images__(
  15. filename if not binary else binary,
  16. zoomin,
  17. from_page,
  18. to_page)
  19. callback(0.1, "OCR finished")
  20. from timeit import default_timer as timer
  21. start = timer()
  22. self._layouts_paddle(zoomin)
  23. callback(0.47, "Layout analysis finished")
  24. print("paddle layouts:", timer() - start)
  25. self._table_transformer_job(zoomin)
  26. callback(0.68, "Table analysis finished")
  27. self._text_merge()
  28. column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
  29. self._concat_downward(concat_between_pages=False)
  30. self._filter_forpages()
  31. self._merge_with_same_bullet()
  32. callback(0.75, "Text merging finished.")
  33. tbls = self._extract_table_figure(True, zoomin, False)
  34. callback(0.8, "Text extraction finished")
  35. return [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno","")) for b in self.boxes]
  36. def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
  37. doc = {
  38. "docnm_kwd": filename,
  39. "title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
  40. }
  41. doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
  42. pdf_parser = None
  43. sections,tbls = [], []
  44. if re.search(r"\.docx?$", filename, re.IGNORECASE):
  45. callback(0.1, "Start to parse.")
  46. doc_parser = HuDocxParser()
  47. # TODO: table of contents need to be removed
  48. sections, tbls = doc_parser(binary if binary else filename)
  49. remove_contents_table(sections, eng = is_english(random.choices([t for t,_ in sections], k=200)))
  50. callback(0.8, "Finish parsing.")
  51. elif re.search(r"\.pdf$", filename, re.IGNORECASE):
  52. pdf_parser = Pdf()
  53. sections,tbls = pdf_parser(filename if not binary else binary,
  54. from_page=from_page, to_page=to_page, callback=callback)
  55. elif re.search(r"\.txt$", filename, re.IGNORECASE):
  56. callback(0.1, "Start to parse.")
  57. txt = ""
  58. if binary:txt = binary.decode("utf-8")
  59. else:
  60. with open(filename, "r") as f:
  61. while True:
  62. l = f.readline()
  63. if not l:break
  64. txt += l
  65. sections = txt.split("\n")
  66. sections = [(l,"") for l in sections if l]
  67. remove_contents_table(sections, eng = is_english(random.choices([t for t,_ in sections], k=200)))
  68. callback(0.8, "Finish parsing.")
  69. else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
  70. bull = bullets_category([b["text"] for b in random.choices([t for t,_ in sections], k=100)])
  71. projs = [len(BULLET_PATTERN[bull]) + 1] * len(sections)
  72. levels = [[]] * len(BULLET_PATTERN[bull]) + 2
  73. for i, (txt, layout) in enumerate(sections):
  74. for j, p in enumerate(BULLET_PATTERN[bull]):
  75. if re.match(p, txt.strip()):
  76. projs[i] = j
  77. levels[j].append(i)
  78. break
  79. else:
  80. if re.search(r"(title|head)", layout):
  81. projs[i] = BULLET_PATTERN[bull]
  82. levels[BULLET_PATTERN[bull]].append(i)
  83. else:
  84. levels[BULLET_PATTERN[bull] + 1].append(i)
  85. sections = [t for t,_ in sections]
  86. def binary_search(arr, target):
  87. if target > arr[-1]: return len(arr) - 1
  88. if target > arr[0]: return -1
  89. s, e = 0, len(arr)
  90. while e - s > 1:
  91. i = (e + s) // 2
  92. if target > arr[i]:
  93. s = i
  94. continue
  95. elif target < arr[i]:
  96. e = i
  97. continue
  98. else:
  99. assert False
  100. return s
  101. cks = []
  102. readed = [False] * len(sections)
  103. levels = levels[::-1]
  104. for i, arr in enumerate(levels):
  105. for j in arr:
  106. if readed[j]: continue
  107. readed[j] = True
  108. cks.append([j])
  109. if i + 1 == len(levels) - 1: continue
  110. for ii in range(i + 1, len(levels)):
  111. jj = binary_search(levels[ii], j)
  112. if jj < 0: break
  113. if jj > cks[-1][-1]: cks[-1].pop(-1)
  114. cks[-1].append(levels[ii][jj])
  115. # is it English
  116. eng = is_english(random.choices(sections, k=218))
  117. res = []
  118. # add tables
  119. for img, rows in tbls:
  120. bs = 10
  121. de = ";" if eng else ";"
  122. for i in range(0, len(rows), bs):
  123. d = copy.deepcopy(doc)
  124. r = de.join(rows[i:i + bs])
  125. r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
  126. tokenize(d, r, eng)
  127. d["image"] = img
  128. res.append(d)
  129. # wrap up to es documents
  130. for ck in cks:
  131. print("\n-".join(ck[::-1]))
  132. ck = "\n".join(ck[::-1])
  133. d = copy.deepcopy(doc)
  134. if pdf_parser:
  135. d["image"] = pdf_parser.crop(ck)
  136. ck = pdf_parser.remove_tag(ck)
  137. tokenize(d, ck, eng)
  138. res.append(d)
  139. return res
  140. if __name__ == "__main__":
  141. import sys
  142. chunk(sys.argv[1])