| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- import copy
- import random
- import re
- from io import BytesIO
- from docx import Document
- import numpy as np
- from rag.app import bullets_category, BULLET_PATTERN, is_english, tokenize, remove_contents_table
- from rag.nlp import huqie
- from rag.parser.docx_parser import HuDocxParser
- from rag.parser.pdf_parser import HuParser
-
-
- class Pdf(HuParser):
- def __call__(self, filename, binary=None, from_page=0,
- to_page=100000, zoomin=3, callback=None):
- self.__images__(
- filename if not binary else binary,
- zoomin,
- from_page,
- to_page)
- callback(0.1, "OCR finished")
-
- from timeit import default_timer as timer
- start = timer()
- self._layouts_paddle(zoomin)
- callback(0.47, "Layout analysis finished")
- print("paddle layouts:", timer() - start)
- self._table_transformer_job(zoomin)
- callback(0.68, "Table analysis finished")
- self._text_merge()
- column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
- self._concat_downward(concat_between_pages=False)
- self._filter_forpages()
- self._merge_with_same_bullet()
- callback(0.75, "Text merging finished.")
- tbls = self._extract_table_figure(True, zoomin, False)
-
- callback(0.8, "Text extraction finished")
-
- return [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno","")) for b in self.boxes]
-
-
- def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
- doc = {
- "docnm_kwd": filename,
- "title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
- }
- doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
- pdf_parser = None
- sections,tbls = [], []
- if re.search(r"\.docx?$", filename, re.IGNORECASE):
- callback(0.1, "Start to parse.")
- doc_parser = HuDocxParser()
- # TODO: table of contents need to be removed
- sections, tbls = doc_parser(binary if binary else filename)
- remove_contents_table(sections, eng = is_english(random.choices([t for t,_ in sections], k=200)))
- callback(0.8, "Finish parsing.")
- elif re.search(r"\.pdf$", filename, re.IGNORECASE):
- pdf_parser = Pdf()
- sections,tbls = pdf_parser(filename if not binary else binary,
- from_page=from_page, to_page=to_page, callback=callback)
- elif re.search(r"\.txt$", filename, re.IGNORECASE):
- callback(0.1, "Start to parse.")
- txt = ""
- if binary:txt = binary.decode("utf-8")
- else:
- with open(filename, "r") as f:
- while True:
- l = f.readline()
- if not l:break
- txt += l
- sections = txt.split("\n")
- sections = [(l,"") for l in sections if l]
- remove_contents_table(sections, eng = is_english(random.choices([t for t,_ in sections], k=200)))
- callback(0.8, "Finish parsing.")
- else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
-
- bull = bullets_category([b["text"] for b in random.choices([t for t,_ in sections], k=100)])
- projs = [len(BULLET_PATTERN[bull]) + 1] * len(sections)
- levels = [[]] * len(BULLET_PATTERN[bull]) + 2
- for i, (txt, layout) in enumerate(sections):
- for j, p in enumerate(BULLET_PATTERN[bull]):
- if re.match(p, txt.strip()):
- projs[i] = j
- levels[j].append(i)
- break
- else:
- if re.search(r"(title|head)", layout):
- projs[i] = BULLET_PATTERN[bull]
- levels[BULLET_PATTERN[bull]].append(i)
- else:
- levels[BULLET_PATTERN[bull] + 1].append(i)
- sections = [t for t,_ in sections]
-
- def binary_search(arr, target):
- if target > arr[-1]: return len(arr) - 1
- if target > arr[0]: return -1
- s, e = 0, len(arr)
- while e - s > 1:
- i = (e + s) // 2
- if target > arr[i]:
- s = i
- continue
- elif target < arr[i]:
- e = i
- continue
- else:
- assert False
- return s
-
- cks = []
- readed = [False] * len(sections)
- levels = levels[::-1]
- for i, arr in enumerate(levels):
- for j in arr:
- if readed[j]: continue
- readed[j] = True
- cks.append([j])
- if i + 1 == len(levels) - 1: continue
- for ii in range(i + 1, len(levels)):
- jj = binary_search(levels[ii], j)
- if jj < 0: break
- if jj > cks[-1][-1]: cks[-1].pop(-1)
- cks[-1].append(levels[ii][jj])
-
- # is it English
- eng = is_english(random.choices(sections, k=218))
-
- res = []
- # add tables
- for img, rows in tbls:
- bs = 10
- de = ";" if eng else ";"
- for i in range(0, len(rows), bs):
- d = copy.deepcopy(doc)
- r = de.join(rows[i:i + bs])
- r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
- tokenize(d, r, eng)
- d["image"] = img
- res.append(d)
- # wrap up to es documents
- for ck in cks:
- print("\n-".join(ck[::-1]))
- ck = "\n".join(ck[::-1])
- d = copy.deepcopy(doc)
- if pdf_parser:
- d["image"] = pdf_parser.crop(ck)
- ck = pdf_parser.remove_tag(ck)
- tokenize(d, ck, eng)
- res.append(d)
- return res
-
-
- if __name__ == "__main__":
- import sys
- chunk(sys.argv[1])
|