| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 |
- #
- # Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import logging
- from tavily import TavilyClient
- from api.utils import get_uuid
- from rag.nlp import rag_tokenizer
-
-
- class Tavily:
- def __init__(self, api_key: str):
- self.tavily_client = TavilyClient(api_key=api_key)
-
- def search(self, query):
- try:
- response = self.tavily_client.search(
- query=query,
- search_depth="advanced"
- )
- return [{"url": res["url"], "title": res["title"], "content": res["content"], "score": res["score"]} for res in response["results"]]
- except Exception as e:
- logging.exception(e)
-
- return []
-
- def retrieve_chunks(self, question):
- chunks = []
- aggs = []
- logging.info("[Tavily]Q: " + question)
- for r in self.search(question):
- id = get_uuid()
- chunks.append({
- "chunk_id": id,
- "content_ltks": rag_tokenizer.tokenize(r["content"]),
- "content_with_weight": r["content"],
- "doc_id": id,
- "docnm_kwd": r["title"],
- "kb_id": [],
- "important_kwd": [],
- "image_id": "",
- "similarity": r["score"],
- "vector_similarity": 1.,
- "term_similarity": 0,
- "vector": [],
- "positions": [],
- "url": r["url"]
- })
- aggs.append({
- "doc_name": r["title"],
- "doc_id": id,
- "count": 1,
- "url": r["url"]
- })
- logging.info("[Tavily]R: "+r["content"][:128]+"...")
- return {"chunks": chunks, "doc_aggs": aggs}
|