| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import os
- import json
- import re
- from copy import deepcopy
-
- from api.db import LLMType, ParserType
- from api.db.db_models import Dialog, Conversation
- from api.db.services.common_service import CommonService
- from api.db.services.knowledgebase_service import KnowledgebaseService
- from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
- from api.settings import chat_logger, retrievaler, kg_retrievaler
- from rag.app.resume import forbidden_select_fields4resume
- from rag.nlp import keyword_extraction
- from rag.nlp.search import index_name
- from rag.utils import rmSpace, num_tokens_from_string, encoder
- from api.utils.file_utils import get_project_base_directory
-
-
- class DialogService(CommonService):
- model = Dialog
-
-
- class ConversationService(CommonService):
- model = Conversation
-
-
- def message_fit_in(msg, max_length=4000):
- def count():
- nonlocal msg
- tks_cnts = []
- for m in msg:
- tks_cnts.append(
- {"role": m["role"], "count": num_tokens_from_string(m["content"])})
- total = 0
- for m in tks_cnts:
- total += m["count"]
- return total
-
- c = count()
- if c < max_length:
- return c, msg
-
- msg_ = [m for m in msg[:-1] if m["role"] == "system"]
- msg_.append(msg[-1])
- msg = msg_
- c = count()
- if c < max_length:
- return c, msg
-
- ll = num_tokens_from_string(msg_[0]["content"])
- l = num_tokens_from_string(msg_[-1]["content"])
- if ll / (ll + l) > 0.8:
- m = msg_[0]["content"]
- m = encoder.decode(encoder.encode(m)[:max_length - l])
- msg[0]["content"] = m
- return max_length, msg
-
- m = msg_[1]["content"]
- m = encoder.decode(encoder.encode(m)[:max_length - l])
- msg[1]["content"] = m
- return max_length, msg
-
-
- def llm_id2llm_type(llm_id):
- fnm = os.path.join(get_project_base_directory(), "conf")
- llm_factories = json.load(open(os.path.join(fnm, "llm_factories.json"), "r"))
- for llm_factory in llm_factories["factory_llm_infos"]:
- for llm in llm_factory["llm"]:
- if llm_id == llm["llm_name"]:
- return llm["model_type"].strip(",")[-1]
-
-
- def chat(dialog, messages, stream=True, **kwargs):
- assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
- llm = LLMService.query(llm_name=dialog.llm_id)
- if not llm:
- llm = TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=dialog.llm_id)
- if not llm:
- raise LookupError("LLM(%s) not found" % dialog.llm_id)
- max_tokens = 8192
- else:
- max_tokens = llm[0].max_tokens
- kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids)
- embd_nms = list(set([kb.embd_id for kb in kbs]))
- if len(embd_nms) != 1:
- yield {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
- return {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
-
- is_kg = all([kb.parser_id == ParserType.KG for kb in kbs])
- retr = retrievaler if not is_kg else kg_retrievaler
-
- questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
- attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None
- if "doc_ids" in messages[-1]:
- attachments = messages[-1]["doc_ids"]
-
- embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embd_nms[0])
- if llm_id2llm_type(dialog.llm_id) == "image2text":
- chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
- else:
- chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
-
- prompt_config = dialog.prompt_config
- field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
- # try to use sql if field mapping is good to go
- if field_map:
- chat_logger.info("Use SQL to retrieval:{}".format(questions[-1]))
- ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True))
- if ans:
- yield ans
- return
-
- for p in prompt_config["parameters"]:
- if p["key"] == "knowledge":
- continue
- if p["key"] not in kwargs and not p["optional"]:
- raise KeyError("Miss parameter: " + p["key"])
- if p["key"] not in kwargs:
- prompt_config["system"] = prompt_config["system"].replace(
- "{%s}" % p["key"], " ")
-
- rerank_mdl = None
- if dialog.rerank_id:
- rerank_mdl = LLMBundle(dialog.tenant_id, LLMType.RERANK, dialog.rerank_id)
-
- for _ in range(len(questions) // 2):
- questions.append(questions[-1])
- if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
- kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
- else:
- if prompt_config.get("keyword", False):
- questions[-1] += keyword_extraction(chat_mdl, questions[-1])
- kbinfos = retr.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
- dialog.similarity_threshold,
- dialog.vector_similarity_weight,
- doc_ids=attachments,
- top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl)
- knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
- #self-rag
- if dialog.prompt_config.get("self_rag") and not relevant(dialog.tenant_id, dialog.llm_id, questions[-1], knowledges):
- questions[-1] = rewrite(dialog.tenant_id, dialog.llm_id, questions[-1])
- kbinfos = retr.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
- dialog.similarity_threshold,
- dialog.vector_similarity_weight,
- doc_ids=attachments,
- top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl)
- knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
-
- chat_logger.info(
- "{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
-
- if not knowledges and prompt_config.get("empty_response"):
- yield {"answer": prompt_config["empty_response"], "reference": kbinfos}
- return {"answer": prompt_config["empty_response"], "reference": kbinfos}
-
- kwargs["knowledge"] = "\n".join(knowledges)
- gen_conf = dialog.llm_setting
-
- msg = [{"role": "system", "content": prompt_config["system"].format(**kwargs)}]
- msg.extend([{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])}
- for m in messages if m["role"] != "system"])
- used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.97))
- assert len(msg) >= 2, f"message_fit_in has bug: {msg}"
-
- if "max_tokens" in gen_conf:
- gen_conf["max_tokens"] = min(
- gen_conf["max_tokens"],
- max_tokens - used_token_count)
-
- def decorate_answer(answer):
- nonlocal prompt_config, knowledges, kwargs, kbinfos
- refs = []
- if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
- answer, idx = retr.insert_citations(answer,
- [ck["content_ltks"]
- for ck in kbinfos["chunks"]],
- [ck["vector"]
- for ck in kbinfos["chunks"]],
- embd_mdl,
- tkweight=1 - dialog.vector_similarity_weight,
- vtweight=dialog.vector_similarity_weight)
- idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
- recall_docs = [
- d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
- if not recall_docs: recall_docs = kbinfos["doc_aggs"]
- kbinfos["doc_aggs"] = recall_docs
-
- refs = deepcopy(kbinfos)
- for c in refs["chunks"]:
- if c.get("vector"):
- del c["vector"]
-
- if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
- answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
- return {"answer": answer, "reference": refs}
-
- if stream:
- answer = ""
- for ans in chat_mdl.chat_streamly(msg[0]["content"], msg[1:], gen_conf):
- answer = ans
- yield {"answer": answer, "reference": {}}
- yield decorate_answer(answer)
- else:
- answer = chat_mdl.chat(
- msg[0]["content"], msg[1:], gen_conf)
- chat_logger.info("User: {}|Assistant: {}".format(
- msg[-1]["content"], answer))
- yield decorate_answer(answer)
-
-
- def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
- sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据用户的问题列表,写出最后一个问题对应的SQL。"
- user_promt = """
- 表名:{};
- 数据库表字段说明如下:
- {}
-
- 问题如下:
- {}
- 请写出SQL, 且只要SQL,不要有其他说明及文字。
- """.format(
- index_name(tenant_id),
- "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
- question
- )
- tried_times = 0
-
- def get_table():
- nonlocal sys_prompt, user_promt, question, tried_times
- sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {
- "temperature": 0.06})
- print(user_promt, sql)
- chat_logger.info(f"“{question}”==>{user_promt} get SQL: {sql}")
- sql = re.sub(r"[\r\n]+", " ", sql.lower())
- sql = re.sub(r".*select ", "select ", sql.lower())
- sql = re.sub(r" +", " ", sql)
- sql = re.sub(r"([;;]|```).*", "", sql)
- if sql[:len("select ")] != "select ":
- return None, None
- if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()):
- if sql[:len("select *")] != "select *":
- sql = "select doc_id,docnm_kwd," + sql[6:]
- else:
- flds = []
- for k in field_map.keys():
- if k in forbidden_select_fields4resume:
- continue
- if len(flds) > 11:
- break
- flds.append(k)
- sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
-
- print(f"“{question}” get SQL(refined): {sql}")
-
- chat_logger.info(f"“{question}” get SQL(refined): {sql}")
- tried_times += 1
- return retrievaler.sql_retrieval(sql, format="json"), sql
-
- tbl, sql = get_table()
- if tbl is None:
- return None
- if tbl.get("error") and tried_times <= 2:
- user_promt = """
- 表名:{};
- 数据库表字段说明如下:
- {}
-
- 问题如下:
- {}
-
- 你上一次给出的错误SQL如下:
- {}
-
- 后台报错如下:
- {}
-
- 请纠正SQL中的错误再写一遍,且只要SQL,不要有其他说明及文字。
- """.format(
- index_name(tenant_id),
- "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
- question, sql, tbl["error"]
- )
- tbl, sql = get_table()
- chat_logger.info("TRY it again: {}".format(sql))
-
- chat_logger.info("GET table: {}".format(tbl))
- print(tbl)
- if tbl.get("error") or len(tbl["rows"]) == 0:
- return None
-
- docid_idx = set([ii for ii, c in enumerate(
- tbl["columns"]) if c["name"] == "doc_id"])
- docnm_idx = set([ii for ii, c in enumerate(
- tbl["columns"]) if c["name"] == "docnm_kwd"])
- clmn_idx = [ii for ii in range(
- len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)]
-
- # compose markdown table
- clmns = "|" + "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"],
- tbl["columns"][i]["name"])) for i in
- clmn_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
-
- line = "|" + "|".join(["------" for _ in range(len(clmn_idx))]) + \
- ("|------|" if docid_idx and docid_idx else "")
-
- rows = ["|" +
- "|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") +
- "|" for r in tbl["rows"]]
- if quota:
- rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
- else:
- rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
- rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)
-
- if not docid_idx or not docnm_idx:
- chat_logger.warning("SQL missing field: " + sql)
- return {
- "answer": "\n".join([clmns, line, rows]),
- "reference": {"chunks": [], "doc_aggs": []}
- }
-
- docid_idx = list(docid_idx)[0]
- docnm_idx = list(docnm_idx)[0]
- doc_aggs = {}
- for r in tbl["rows"]:
- if r[docid_idx] not in doc_aggs:
- doc_aggs[r[docid_idx]] = {"doc_name": r[docnm_idx], "count": 0}
- doc_aggs[r[docid_idx]]["count"] += 1
- return {
- "answer": "\n".join([clmns, line, rows]),
- "reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]],
- "doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in
- doc_aggs.items()]}
- }
-
-
- def relevant(tenant_id, llm_id, question, contents: list):
- if llm_id2llm_type(llm_id) == "image2text":
- chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
- else:
- chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
- prompt = """
- You are a grader assessing relevance of a retrieved document to a user question.
- It does not need to be a stringent test. The goal is to filter out erroneous retrievals.
- If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant.
- Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.
- No other words needed except 'yes' or 'no'.
- """
- if not contents:return False
- contents = "Documents: \n" + " - ".join(contents)
- contents = f"Question: {question}\n" + contents
- if num_tokens_from_string(contents) >= chat_mdl.max_length - 4:
- contents = encoder.decode(encoder.encode(contents)[:chat_mdl.max_length - 4])
- ans = chat_mdl.chat(prompt, [{"role": "user", "content": contents}], {"temperature": 0.01})
- if ans.lower().find("yes") >= 0: return True
- return False
-
-
- def rewrite(tenant_id, llm_id, question):
- if llm_id2llm_type(llm_id) == "image2text":
- chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
- else:
- chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
- prompt = """
- You are an expert at query expansion to generate a paraphrasing of a question.
- I can't retrieval relevant information from the knowledge base by using user's question directly.
- You need to expand or paraphrase user's question by multiple ways such as using synonyms words/phrase,
- writing the abbreviation in its entirety, adding some extra descriptions or explanations,
- changing the way of expression, translating the original question into another language (English/Chinese), etc.
- And return 5 versions of question and one is from translation.
- Just list the question. No other words are needed.
- """
- ans = chat_mdl.chat(prompt, [{"role": "user", "content": question}], {"temperature": 0.8})
- return ans
|