| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import logging
- import re
- from concurrent.futures import ThreadPoolExecutor, ALL_COMPLETED, wait
- from threading import Lock
- import umap
- import numpy as np
- from sklearn.mixture import GaussianMixture
-
- from rag.utils import truncate
-
-
- class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
- def __init__(self, max_cluster, llm_model, embd_model, prompt, max_token=512, threshold=0.1):
- self._max_cluster = max_cluster
- self._llm_model = llm_model
- self._embd_model = embd_model
- self._threshold = threshold
- self._prompt = prompt
- self._max_token = max_token
-
- def _get_optimal_clusters(self, embeddings: np.ndarray, random_state: int):
- max_clusters = min(self._max_cluster, len(embeddings))
- n_clusters = np.arange(1, max_clusters)
- bics = []
- for n in n_clusters:
- gm = GaussianMixture(n_components=n, random_state=random_state)
- gm.fit(embeddings)
- bics.append(gm.bic(embeddings))
- optimal_clusters = n_clusters[np.argmin(bics)]
- return optimal_clusters
-
- def __call__(self, chunks, random_state, callback=None):
- layers = [(0, len(chunks))]
- start, end = 0, len(chunks)
- if len(chunks) <= 1: return
- chunks = [(s, a) for s, a in chunks if len(a) > 0]
-
- def summarize(ck_idx, lock):
- nonlocal chunks
- try:
- texts = [chunks[i][0] for i in ck_idx]
- len_per_chunk = int((self._llm_model.max_length - self._max_token) / len(texts))
- cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts])
- cnt = self._llm_model.chat("You're a helpful assistant.",
- [{"role": "user",
- "content": self._prompt.format(cluster_content=cluster_content)}],
- {"temperature": 0.3, "max_tokens": self._max_token}
- )
- cnt = re.sub("(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)", "",
- cnt)
- logging.debug(f"SUM: {cnt}")
- embds, _ = self._embd_model.encode([cnt])
- with lock:
- if not len(embds[0]): return
- chunks.append((cnt, embds[0]))
- except Exception as e:
- logging.exception("summarize got exception")
- return e
-
- labels = []
- while end - start > 1:
- embeddings = [embd for _, embd in chunks[start: end]]
- if len(embeddings) == 2:
- summarize([start, start + 1], Lock())
- if callback:
- callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end))
- labels.extend([0, 0])
- layers.append((end, len(chunks)))
- start = end
- end = len(chunks)
- continue
-
- n_neighbors = int((len(embeddings) - 1) ** 0.8)
- reduced_embeddings = umap.UMAP(
- n_neighbors=max(2, n_neighbors), n_components=min(12, len(embeddings) - 2), metric="cosine"
- ).fit_transform(embeddings)
- n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state)
- if n_clusters == 1:
- lbls = [0 for _ in range(len(reduced_embeddings))]
- else:
- gm = GaussianMixture(n_components=n_clusters, random_state=random_state)
- gm.fit(reduced_embeddings)
- probs = gm.predict_proba(reduced_embeddings)
- lbls = [np.where(prob > self._threshold)[0] for prob in probs]
- lbls = [lbl[0] if isinstance(lbl, np.ndarray) else lbl for lbl in lbls]
- lock = Lock()
- with ThreadPoolExecutor(max_workers=12) as executor:
- threads = []
- for c in range(n_clusters):
- ck_idx = [i + start for i in range(len(lbls)) if lbls[i] == c]
- threads.append(executor.submit(summarize, ck_idx, lock))
- wait(threads, return_when=ALL_COMPLETED)
- logging.debug(str([t.result() for t in threads]))
-
- assert len(chunks) - end == n_clusters, "{} vs. {}".format(len(chunks) - end, n_clusters)
- labels.extend(lbls)
- layers.append((end, len(chunks)))
- if callback:
- callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end))
- start = end
- end = len(chunks)
-
- return chunks
|