| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import re
- from typing import Optional
- import threading
- import requests
- from huggingface_hub import snapshot_download
- from openai.lib.azure import AzureOpenAI
- from zhipuai import ZhipuAI
- import os
- from abc import ABC
- from ollama import Client
- import dashscope
- from openai import OpenAI
- import numpy as np
- import asyncio
-
- from api.settings import LIGHTEN
- from api.utils.file_utils import get_home_cache_dir
- from rag.utils import num_tokens_from_string, truncate
- import google.generativeai as genai
- import json
-
- class Base(ABC):
- def __init__(self, key, model_name):
- pass
-
- def encode(self, texts: list, batch_size=32):
- raise NotImplementedError("Please implement encode method!")
-
- def encode_queries(self, text: str):
- raise NotImplementedError("Please implement encode method!")
-
-
- class DefaultEmbedding(Base):
- _model = None
- _model_lock = threading.Lock()
- def __init__(self, key, model_name, **kwargs):
- """
- If you have trouble downloading HuggingFace models, -_^ this might help!!
-
- For Linux:
- export HF_ENDPOINT=https://hf-mirror.com
-
- For Windows:
- Good luck
- ^_-
-
- """
- if not LIGHTEN and not DefaultEmbedding._model:
- with DefaultEmbedding._model_lock:
- from FlagEmbedding import FlagModel
- import torch
- if not DefaultEmbedding._model:
- try:
- DefaultEmbedding._model = FlagModel(os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z]+/", "", model_name)),
- query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
- use_fp16=torch.cuda.is_available())
- except Exception as e:
- model_dir = snapshot_download(repo_id="BAAI/bge-large-zh-v1.5",
- local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z]+/", "", model_name)),
- local_dir_use_symlinks=False)
- DefaultEmbedding._model = FlagModel(model_dir,
- query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
- use_fp16=torch.cuda.is_available())
- self._model = DefaultEmbedding._model
-
- def encode(self, texts: list, batch_size=32):
- texts = [truncate(t, 2048) for t in texts]
- token_count = 0
- for t in texts:
- token_count += num_tokens_from_string(t)
- res = []
- for i in range(0, len(texts), batch_size):
- res.extend(self._model.encode(texts[i:i + batch_size]).tolist())
- return np.array(res), token_count
-
- def encode_queries(self, text: str):
- token_count = num_tokens_from_string(text)
- return self._model.encode_queries([text]).tolist()[0], token_count
-
-
- class OpenAIEmbed(Base):
- def __init__(self, key, model_name="text-embedding-ada-002",
- base_url="https://api.openai.com/v1"):
- if not base_url:
- base_url = "https://api.openai.com/v1"
- self.client = OpenAI(api_key=key, base_url=base_url)
- self.model_name = model_name
-
- def encode(self, texts: list, batch_size=32):
- texts = [truncate(t, 8191) for t in texts]
- res = self.client.embeddings.create(input=texts,
- model=self.model_name)
- return np.array([d.embedding for d in res.data]
- ), res.usage.total_tokens
-
- def encode_queries(self, text):
- res = self.client.embeddings.create(input=[truncate(text, 8191)],
- model=self.model_name)
- return np.array(res.data[0].embedding), res.usage.total_tokens
-
-
- class LocalAIEmbed(Base):
- def __init__(self, key, model_name, base_url):
- if not base_url:
- raise ValueError("Local embedding model url cannot be None")
- if base_url.split("/")[-1] != "v1":
- base_url = os.path.join(base_url, "v1")
- self.client = OpenAI(api_key="empty", base_url=base_url)
- self.model_name = model_name.split("___")[0]
-
- def encode(self, texts: list, batch_size=32):
- res = self.client.embeddings.create(input=texts, model=self.model_name)
- return (
- np.array([d.embedding for d in res.data]),
- 1024,
- ) # local embedding for LmStudio donot count tokens
-
- def encode_queries(self, text):
- embds, cnt = self.encode([text])
- return np.array(embds[0]), cnt
-
-
- class AzureEmbed(OpenAIEmbed):
- def __init__(self, key, model_name, **kwargs):
- self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
- self.model_name = model_name
-
-
- class BaiChuanEmbed(OpenAIEmbed):
- def __init__(self, key,
- model_name='Baichuan-Text-Embedding',
- base_url='https://api.baichuan-ai.com/v1'):
- if not base_url:
- base_url = "https://api.baichuan-ai.com/v1"
- super().__init__(key, model_name, base_url)
-
-
- class QWenEmbed(Base):
- def __init__(self, key, model_name="text_embedding_v2", **kwargs):
- dashscope.api_key = key
- self.model_name = model_name
-
- def encode(self, texts: list, batch_size=10):
- import dashscope
- batch_size = min(batch_size, 4)
- try:
- res = []
- token_count = 0
- texts = [truncate(t, 2048) for t in texts]
- for i in range(0, len(texts), batch_size):
- resp = dashscope.TextEmbedding.call(
- model=self.model_name,
- input=texts[i:i + batch_size],
- text_type="document"
- )
- embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
- for e in resp["output"]["embeddings"]:
- embds[e["text_index"]] = e["embedding"]
- res.extend(embds)
- token_count += resp["usage"]["total_tokens"]
- return np.array(res), token_count
- except Exception as e:
- raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
- return np.array([]), 0
-
- def encode_queries(self, text):
- try:
- resp = dashscope.TextEmbedding.call(
- model=self.model_name,
- input=text[:2048],
- text_type="query"
- )
- return np.array(resp["output"]["embeddings"][0]
- ["embedding"]), resp["usage"]["total_tokens"]
- except Exception as e:
- raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
- return np.array([]), 0
-
-
- class ZhipuEmbed(Base):
- def __init__(self, key, model_name="embedding-2", **kwargs):
- self.client = ZhipuAI(api_key=key)
- self.model_name = model_name
-
- def encode(self, texts: list, batch_size=32):
- arr = []
- tks_num = 0
- for txt in texts:
- res = self.client.embeddings.create(input=txt,
- model=self.model_name)
- arr.append(res.data[0].embedding)
- tks_num += res.usage.total_tokens
- return np.array(arr), tks_num
-
- def encode_queries(self, text):
- res = self.client.embeddings.create(input=text,
- model=self.model_name)
- return np.array(res.data[0].embedding), res.usage.total_tokens
-
-
- class OllamaEmbed(Base):
- def __init__(self, key, model_name, **kwargs):
- self.client = Client(host=kwargs["base_url"])
- self.model_name = model_name
-
- def encode(self, texts: list, batch_size=32):
- arr = []
- tks_num = 0
- for txt in texts:
- res = self.client.embeddings(prompt=txt,
- model=self.model_name)
- arr.append(res["embedding"])
- tks_num += 128
- return np.array(arr), tks_num
-
- def encode_queries(self, text):
- res = self.client.embeddings(prompt=text,
- model=self.model_name)
- return np.array(res["embedding"]), 128
-
-
- class FastEmbed(Base):
- _model = None
-
- def __init__(
- self,
- key: Optional[str] = None,
- model_name: str = "BAAI/bge-small-en-v1.5",
- cache_dir: Optional[str] = None,
- threads: Optional[int] = None,
- **kwargs,
- ):
- if not LIGHTEN and not FastEmbed._model:
- from fastembed import TextEmbedding
- self._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
-
- def encode(self, texts: list, batch_size=32):
- # Using the internal tokenizer to encode the texts and get the total
- # number of tokens
- encodings = self._model.model.tokenizer.encode_batch(texts)
- total_tokens = sum(len(e) for e in encodings)
-
- embeddings = [e.tolist() for e in self._model.embed(texts, batch_size)]
-
- return np.array(embeddings), total_tokens
-
- def encode_queries(self, text: str):
- # Using the internal tokenizer to encode the texts and get the total
- # number of tokens
- encoding = self._model.model.tokenizer.encode(text)
- embedding = next(self._model.query_embed(text)).tolist()
-
- return np.array(embedding), len(encoding.ids)
-
-
- class XinferenceEmbed(Base):
- def __init__(self, key, model_name="", base_url=""):
- if base_url.split("/")[-1] != "v1":
- base_url = os.path.join(base_url, "v1")
- self.client = OpenAI(api_key="xxx", base_url=base_url)
- self.model_name = model_name
-
- def encode(self, texts: list, batch_size=32):
- res = self.client.embeddings.create(input=texts,
- model=self.model_name)
- return np.array([d.embedding for d in res.data]
- ), res.usage.total_tokens
-
- def encode_queries(self, text):
- res = self.client.embeddings.create(input=[text],
- model=self.model_name)
- return np.array(res.data[0].embedding), res.usage.total_tokens
-
-
- class YoudaoEmbed(Base):
- _client = None
-
- def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
- if not LIGHTEN and not YoudaoEmbed._client:
- from BCEmbedding import EmbeddingModel as qanthing
- try:
- print("LOADING BCE...")
- YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(
- get_home_cache_dir(),
- "bce-embedding-base_v1"))
- except Exception as e:
- YoudaoEmbed._client = qanthing(
- model_name_or_path=model_name.replace(
- "maidalun1020", "InfiniFlow"))
-
- def encode(self, texts: list, batch_size=10):
- res = []
- token_count = 0
- for t in texts:
- token_count += num_tokens_from_string(t)
- for i in range(0, len(texts), batch_size):
- embds = YoudaoEmbed._client.encode(texts[i:i + batch_size])
- res.extend(embds)
- return np.array(res), token_count
-
- def encode_queries(self, text):
- embds = YoudaoEmbed._client.encode([text])
- return np.array(embds[0]), num_tokens_from_string(text)
-
-
- class JinaEmbed(Base):
- def __init__(self, key, model_name="jina-embeddings-v2-base-zh",
- base_url="https://api.jina.ai/v1/embeddings"):
-
- self.base_url = "https://api.jina.ai/v1/embeddings"
- self.headers = {
- "Content-Type": "application/json",
- "Authorization": f"Bearer {key}"
- }
- self.model_name = model_name
-
- def encode(self, texts: list, batch_size=None):
- texts = [truncate(t, 8196) for t in texts]
- data = {
- "model": self.model_name,
- "input": texts,
- 'encoding_type': 'float'
- }
- res = requests.post(self.base_url, headers=self.headers, json=data).json()
- return np.array([d["embedding"] for d in res["data"]]), res["usage"]["total_tokens"]
-
- def encode_queries(self, text):
- embds, cnt = self.encode([text])
- return np.array(embds[0]), cnt
-
-
- class InfinityEmbed(Base):
- _model = None
-
- def __init__(
- self,
- model_names: list[str] = ("BAAI/bge-small-en-v1.5",),
- engine_kwargs: dict = {},
- key = None,
- ):
-
- from infinity_emb import EngineArgs
- from infinity_emb.engine import AsyncEngineArray
-
- self._default_model = model_names[0]
- self.engine_array = AsyncEngineArray.from_args([EngineArgs(model_name_or_path = model_name, **engine_kwargs) for model_name in model_names])
-
- async def _embed(self, sentences: list[str], model_name: str = ""):
- if not model_name:
- model_name = self._default_model
- engine = self.engine_array[model_name]
- was_already_running = engine.is_running
- if not was_already_running:
- await engine.astart()
- embeddings, usage = await engine.embed(sentences=sentences)
- if not was_already_running:
- await engine.astop()
- return embeddings, usage
-
- def encode(self, texts: list[str], model_name: str = "") -> tuple[np.ndarray, int]:
- # Using the internal tokenizer to encode the texts and get the total
- # number of tokens
- embeddings, usage = asyncio.run(self._embed(texts, model_name))
- return np.array(embeddings), usage
-
- def encode_queries(self, text: str) -> tuple[np.ndarray, int]:
- # Using the internal tokenizer to encode the texts and get the total
- # number of tokens
- return self.encode([text])
-
-
- class MistralEmbed(Base):
- def __init__(self, key, model_name="mistral-embed",
- base_url=None):
- from mistralai.client import MistralClient
- self.client = MistralClient(api_key=key)
- self.model_name = model_name
-
- def encode(self, texts: list, batch_size=32):
- texts = [truncate(t, 8196) for t in texts]
- res = self.client.embeddings(input=texts,
- model=self.model_name)
- return np.array([d.embedding for d in res.data]
- ), res.usage.total_tokens
-
- def encode_queries(self, text):
- res = self.client.embeddings(input=[truncate(text, 8196)],
- model=self.model_name)
- return np.array(res.data[0].embedding), res.usage.total_tokens
-
-
- class BedrockEmbed(Base):
- def __init__(self, key, model_name,
- **kwargs):
- import boto3
- self.bedrock_ak = json.loads(key).get('bedrock_ak', '')
- self.bedrock_sk = json.loads(key).get('bedrock_sk', '')
- self.bedrock_region = json.loads(key).get('bedrock_region', '')
- self.model_name = model_name
- self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
- aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
-
- def encode(self, texts: list, batch_size=32):
- texts = [truncate(t, 8196) for t in texts]
- embeddings = []
- token_count = 0
- for text in texts:
- if self.model_name.split('.')[0] == 'amazon':
- body = {"inputText": text}
- elif self.model_name.split('.')[0] == 'cohere':
- body = {"texts": [text], "input_type": 'search_document'}
-
- response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
- model_response = json.loads(response["body"].read())
- embeddings.extend([model_response["embedding"]])
- token_count += num_tokens_from_string(text)
-
- return np.array(embeddings), token_count
-
- def encode_queries(self, text):
-
- embeddings = []
- token_count = num_tokens_from_string(text)
- if self.model_name.split('.')[0] == 'amazon':
- body = {"inputText": truncate(text, 8196)}
- elif self.model_name.split('.')[0] == 'cohere':
- body = {"texts": [truncate(text, 8196)], "input_type": 'search_query'}
-
- response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
- model_response = json.loads(response["body"].read())
- embeddings.extend([model_response["embedding"]])
-
- return np.array(embeddings), token_count
-
- class GeminiEmbed(Base):
- def __init__(self, key, model_name='models/text-embedding-004',
- **kwargs):
- genai.configure(api_key=key)
- self.model_name = 'models/' + model_name
-
- def encode(self, texts: list, batch_size=32):
- texts = [truncate(t, 2048) for t in texts]
- token_count = sum(num_tokens_from_string(text) for text in texts)
- result = genai.embed_content(
- model=self.model_name,
- content=texts,
- task_type="retrieval_document",
- title="Embedding of list of strings")
- return np.array(result['embedding']),token_count
-
- def encode_queries(self, text):
- result = genai.embed_content(
- model=self.model_name,
- content=truncate(text,2048),
- task_type="retrieval_document",
- title="Embedding of single string")
- token_count = num_tokens_from_string(text)
- return np.array(result['embedding']),token_count
-
- class NvidiaEmbed(Base):
- def __init__(
- self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings"
- ):
- if not base_url:
- base_url = "https://integrate.api.nvidia.com/v1/embeddings"
- self.api_key = key
- self.base_url = base_url
- self.headers = {
- "accept": "application/json",
- "Content-Type": "application/json",
- "authorization": f"Bearer {self.api_key}",
- }
- self.model_name = model_name
- if model_name == "nvidia/embed-qa-4":
- self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings"
- self.model_name = "NV-Embed-QA"
- if model_name == "snowflake/arctic-embed-l":
- self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings"
-
- def encode(self, texts: list, batch_size=None):
- payload = {
- "input": texts,
- "input_type": "query",
- "model": self.model_name,
- "encoding_format": "float",
- "truncate": "END",
- }
- res = requests.post(self.base_url, headers=self.headers, json=payload).json()
- return (
- np.array([d["embedding"] for d in res["data"]]),
- res["usage"]["total_tokens"],
- )
-
- def encode_queries(self, text):
- embds, cnt = self.encode([text])
- return np.array(embds[0]), cnt
-
-
- class LmStudioEmbed(LocalAIEmbed):
- def __init__(self, key, model_name, base_url):
- if not base_url:
- raise ValueError("Local llm url cannot be None")
- if base_url.split("/")[-1] != "v1":
- base_url = os.path.join(base_url, "v1")
- self.client = OpenAI(api_key="lm-studio", base_url=base_url)
- self.model_name = model_name
-
-
- class OpenAI_APIEmbed(OpenAIEmbed):
- def __init__(self, key, model_name, base_url):
- if not base_url:
- raise ValueError("url cannot be None")
- if base_url.split("/")[-1] != "v1":
- base_url = os.path.join(base_url, "v1")
- self.client = OpenAI(api_key=key, base_url=base_url)
- self.model_name = model_name.split("___")[0]
-
-
- class CoHereEmbed(Base):
- def __init__(self, key, model_name, base_url=None):
- from cohere import Client
-
- self.client = Client(api_key=key)
- self.model_name = model_name
-
- def encode(self, texts: list, batch_size=32):
- res = self.client.embed(
- texts=texts,
- model=self.model_name,
- input_type="search_query",
- embedding_types=["float"],
- )
- return np.array([d for d in res.embeddings.float]), int(
- res.meta.billed_units.input_tokens
- )
-
- def encode_queries(self, text):
- res = self.client.embed(
- texts=[text],
- model=self.model_name,
- input_type="search_query",
- embedding_types=["float"],
- )
- return np.array([d for d in res.embeddings.float]), int(
- res.meta.billed_units.input_tokens
- )
-
-
- class TogetherAIEmbed(OllamaEmbed):
- def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
- if not base_url:
- base_url = "https://api.together.xyz/v1"
- super().__init__(key, model_name, base_url)
-
-
- class PerfXCloudEmbed(OpenAIEmbed):
- def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
- if not base_url:
- base_url = "https://cloud.perfxlab.cn/v1"
- super().__init__(key, model_name, base_url)
-
-
- class UpstageEmbed(OpenAIEmbed):
- def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
- if not base_url:
- base_url = "https://api.upstage.ai/v1/solar"
- super().__init__(key, model_name, base_url)
-
-
- class SILICONFLOWEmbed(Base):
- def __init__(
- self, key, model_name, base_url="https://api.siliconflow.cn/v1/embeddings"
- ):
- if not base_url:
- base_url = "https://api.siliconflow.cn/v1/embeddings"
- self.headers = {
- "accept": "application/json",
- "content-type": "application/json",
- "authorization": f"Bearer {key}",
- }
- self.base_url = base_url
- self.model_name = model_name
-
- def encode(self, texts: list, batch_size=32):
- payload = {
- "model": self.model_name,
- "input": texts,
- "encoding_format": "float",
- }
- res = requests.post(self.base_url, json=payload, headers=self.headers).json()
- return (
- np.array([d["embedding"] for d in res["data"]]),
- res["usage"]["total_tokens"],
- )
-
- def encode_queries(self, text):
- payload = {
- "model": self.model_name,
- "input": text,
- "encoding_format": "float",
- }
- res = requests.post(self.base_url, json=payload, headers=self.headers).json()
- return np.array(res["data"][0]["embedding"]), res["usage"]["total_tokens"]
-
-
- class ReplicateEmbed(Base):
- def __init__(self, key, model_name, base_url=None):
- from replicate.client import Client
-
- self.model_name = model_name
- self.client = Client(api_token=key)
-
- def encode(self, texts: list, batch_size=32):
- res = self.client.run(self.model_name, input={"texts": json.dumps(texts)})
- return np.array(res), sum([num_tokens_from_string(text) for text in texts])
-
- def encode_queries(self, text):
- res = self.client.embed(self.model_name, input={"texts": [text]})
- return np.array(res), num_tokens_from_string(text)
-
-
- class BaiduYiyanEmbed(Base):
- def __init__(self, key, model_name, base_url=None):
- import qianfan
-
- key = json.loads(key)
- ak = key.get("yiyan_ak", "")
- sk = key.get("yiyan_sk", "")
- self.client = qianfan.Embedding(ak=ak, sk=sk)
- self.model_name = model_name
-
- def encode(self, texts: list, batch_size=32):
- res = self.client.do(model=self.model_name, texts=texts).body
- return (
- np.array([r["embedding"] for r in res["data"]]),
- res["usage"]["total_tokens"],
- )
-
- def encode_queries(self, text):
- res = self.client.do(model=self.model_name, texts=[text]).body
- return (
- np.array([r["embedding"] for r in res["data"]]),
- res["usage"]["total_tokens"],
- )
-
-
- class VoyageEmbed(Base):
- def __init__(self, key, model_name, base_url=None):
- import voyageai
-
- self.client = voyageai.Client(api_key=key)
- self.model_name = model_name
-
- def encode(self, texts: list, batch_size=32):
- res = self.client.embed(
- texts=texts, model=self.model_name, input_type="document"
- )
- return np.array(res.embeddings), res.total_tokens
-
- def encode_queries(self, text):
- res = self.client.embed
- res = self.client.embed(
- texts=text, model=self.model_name, input_type="query"
- )
- return np.array(res.embeddings), res.total_tokens
|