Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

chat.py 15KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import logging
  17. from flask import request
  18. from api import settings
  19. from api.db import StatusEnum
  20. from api.db.services.dialog_service import DialogService
  21. from api.db.services.knowledgebase_service import KnowledgebaseService
  22. from api.db.services.llm_service import TenantLLMService
  23. from api.db.services.user_service import TenantService
  24. from api.utils import get_uuid
  25. from api.utils.api_utils import get_error_data_result, token_required
  26. from api.utils.api_utils import get_result
  27. @manager.route('/chats', methods=['POST']) # noqa: F821
  28. @token_required
  29. def create(tenant_id):
  30. req = request.json
  31. ids = [i for i in req.get("dataset_ids", []) if i]
  32. for kb_id in ids:
  33. kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id)
  34. if not kbs:
  35. return get_error_data_result(f"You don't own the dataset {kb_id}")
  36. kbs = KnowledgebaseService.query(id=kb_id)
  37. kb = kbs[0]
  38. if kb.chunk_num == 0:
  39. return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
  40. kbs = KnowledgebaseService.get_by_ids(ids) if ids else []
  41. embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
  42. embd_count = list(set(embd_ids))
  43. if len(embd_count) > 1:
  44. return get_result(message='Datasets use different embedding models."',
  45. code=settings.RetCode.AUTHENTICATION_ERROR)
  46. req["kb_ids"] = ids
  47. # llm
  48. llm = req.get("llm")
  49. if llm:
  50. if "model_name" in llm:
  51. req["llm_id"] = llm.pop("model_name")
  52. if not TenantLLMService.query(tenant_id=tenant_id, llm_name=req["llm_id"], model_type="chat"):
  53. return get_error_data_result(f"`model_name` {req.get('llm_id')} doesn't exist")
  54. req["llm_setting"] = req.pop("llm")
  55. e, tenant = TenantService.get_by_id(tenant_id)
  56. if not e:
  57. return get_error_data_result(message="Tenant not found!")
  58. # prompt
  59. prompt = req.get("prompt")
  60. key_mapping = {"parameters": "variables",
  61. "prologue": "opener",
  62. "quote": "show_quote",
  63. "system": "prompt",
  64. "rerank_id": "rerank_model",
  65. "vector_similarity_weight": "keywords_similarity_weight"}
  66. key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id","top_k"]
  67. if prompt:
  68. for new_key, old_key in key_mapping.items():
  69. if old_key in prompt:
  70. prompt[new_key] = prompt.pop(old_key)
  71. for key in key_list:
  72. if key in prompt:
  73. req[key] = prompt.pop(key)
  74. req["prompt_config"] = req.pop("prompt")
  75. # init
  76. req["id"] = get_uuid()
  77. req["description"] = req.get("description", "A helpful Assistant")
  78. req["icon"] = req.get("avatar", "")
  79. req["top_n"] = req.get("top_n", 6)
  80. req["top_k"] = req.get("top_k", 1024)
  81. req["rerank_id"] = req.get("rerank_id", "")
  82. if req.get("rerank_id"):
  83. value_rerank_model = ["BAAI/bge-reranker-v2-m3", "maidalun1020/bce-reranker-base_v1"]
  84. if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id,
  85. llm_name=req.get("rerank_id"),
  86. model_type="rerank"):
  87. return get_error_data_result(f"`rerank_model` {req.get('rerank_id')} doesn't exist")
  88. if not req.get("llm_id"):
  89. req["llm_id"] = tenant.llm_id
  90. if not req.get("name"):
  91. return get_error_data_result(message="`name` is required.")
  92. if DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value):
  93. return get_error_data_result(message="Duplicated chat name in creating chat.")
  94. # tenant_id
  95. if req.get("tenant_id"):
  96. return get_error_data_result(message="`tenant_id` must not be provided.")
  97. req["tenant_id"] = tenant_id
  98. # prompt more parameter
  99. default_prompt = {
  100. "system": """You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history.
  101. Here is the knowledge base:
  102. {knowledge}
  103. The above is the knowledge base.""",
  104. "prologue": "Hi! I'm your assistant, what can I do for you?",
  105. "parameters": [
  106. {"key": "knowledge", "optional": False}
  107. ],
  108. "empty_response": "Sorry! No relevant content was found in the knowledge base!",
  109. "quote": True,
  110. "tts": False,
  111. "refine_multiturn": True
  112. }
  113. key_list_2 = ["system", "prologue", "parameters", "empty_response", "quote", "tts", "refine_multiturn"]
  114. if "prompt_config" not in req:
  115. req['prompt_config'] = {}
  116. for key in key_list_2:
  117. temp = req['prompt_config'].get(key)
  118. if (not temp and key == 'system') or (key not in req["prompt_config"]):
  119. req['prompt_config'][key] = default_prompt[key]
  120. for p in req['prompt_config']["parameters"]:
  121. if p["optional"]:
  122. continue
  123. if req['prompt_config']["system"].find("{%s}" % p["key"]) < 0:
  124. return get_error_data_result(
  125. message="Parameter '{}' is not used".format(p["key"]))
  126. # save
  127. if not DialogService.save(**req):
  128. return get_error_data_result(message="Fail to new a chat!")
  129. # response
  130. e, res = DialogService.get_by_id(req["id"])
  131. if not e:
  132. return get_error_data_result(message="Fail to new a chat!")
  133. res = res.to_json()
  134. renamed_dict = {}
  135. for key, value in res["prompt_config"].items():
  136. new_key = key_mapping.get(key, key)
  137. renamed_dict[new_key] = value
  138. res["prompt"] = renamed_dict
  139. del res["prompt_config"]
  140. new_dict = {"similarity_threshold": res["similarity_threshold"],
  141. "keywords_similarity_weight": 1-res["vector_similarity_weight"],
  142. "top_n": res["top_n"],
  143. "rerank_model": res['rerank_id']}
  144. res["prompt"].update(new_dict)
  145. for key in key_list:
  146. del res[key]
  147. res["llm"] = res.pop("llm_setting")
  148. res["llm"]["model_name"] = res.pop("llm_id")
  149. del res["kb_ids"]
  150. res["dataset_ids"] = req["dataset_ids"]
  151. res["avatar"] = res.pop("icon")
  152. return get_result(data=res)
  153. @manager.route('/chats/<chat_id>', methods=['PUT']) # noqa: F821
  154. @token_required
  155. def update(tenant_id, chat_id):
  156. if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
  157. return get_error_data_result(message='You do not own the chat')
  158. req = request.json
  159. ids = req.get("dataset_ids")
  160. if "show_quotation" in req:
  161. req["do_refer"] = req.pop("show_quotation")
  162. if "dataset_ids" in req:
  163. if not ids:
  164. return get_error_data_result("`dataset_ids` can't be empty")
  165. if ids:
  166. for kb_id in ids:
  167. kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id)
  168. if not kbs:
  169. return get_error_data_result(f"You don't own the dataset {kb_id}")
  170. kbs = KnowledgebaseService.query(id=kb_id)
  171. kb = kbs[0]
  172. if kb.chunk_num == 0:
  173. return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
  174. kbs = KnowledgebaseService.get_by_ids(ids)
  175. embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
  176. embd_count = list(set(embd_ids))
  177. if len(embd_count) != 1:
  178. return get_result(
  179. message='Datasets use different embedding models."',
  180. code=settings.RetCode.AUTHENTICATION_ERROR)
  181. req["kb_ids"] = ids
  182. llm = req.get("llm")
  183. if llm:
  184. if "model_name" in llm:
  185. req["llm_id"] = llm.pop("model_name")
  186. if not TenantLLMService.query(tenant_id=tenant_id, llm_name=req["llm_id"], model_type="chat"):
  187. return get_error_data_result(f"`model_name` {req.get('llm_id')} doesn't exist")
  188. req["llm_setting"] = req.pop("llm")
  189. e, tenant = TenantService.get_by_id(tenant_id)
  190. if not e:
  191. return get_error_data_result(message="Tenant not found!")
  192. # prompt
  193. prompt = req.get("prompt")
  194. key_mapping = {"parameters": "variables",
  195. "prologue": "opener",
  196. "quote": "show_quote",
  197. "system": "prompt",
  198. "rerank_id": "rerank_model",
  199. "vector_similarity_weight": "keywords_similarity_weight"}
  200. key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id","top_k"]
  201. if prompt:
  202. for new_key, old_key in key_mapping.items():
  203. if old_key in prompt:
  204. prompt[new_key] = prompt.pop(old_key)
  205. for key in key_list:
  206. if key in prompt:
  207. req[key] = prompt.pop(key)
  208. req["prompt_config"] = req.pop("prompt")
  209. e, res = DialogService.get_by_id(chat_id)
  210. res = res.to_json()
  211. if req.get("rerank_id"):
  212. value_rerank_model = ["BAAI/bge-reranker-v2-m3", "maidalun1020/bce-reranker-base_v1"]
  213. if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id,
  214. llm_name=req.get("rerank_id"),
  215. model_type="rerank"):
  216. return get_error_data_result(f"`rerank_model` {req.get('rerank_id')} doesn't exist")
  217. if "name" in req:
  218. if not req.get("name"):
  219. return get_error_data_result(message="`name` is not empty.")
  220. if req["name"].lower() != res["name"].lower() \
  221. and len(
  222. DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)) > 0:
  223. return get_error_data_result(message="Duplicated chat name in updating dataset.")
  224. if "prompt_config" in req:
  225. res["prompt_config"].update(req["prompt_config"])
  226. for p in res["prompt_config"]["parameters"]:
  227. if p["optional"]:
  228. continue
  229. if res["prompt_config"]["system"].find("{%s}" % p["key"]) < 0:
  230. return get_error_data_result(message="Parameter '{}' is not used".format(p["key"]))
  231. if "llm_setting" in req:
  232. res["llm_setting"].update(req["llm_setting"])
  233. req["prompt_config"] = res["prompt_config"]
  234. req["llm_setting"] = res["llm_setting"]
  235. # avatar
  236. if "avatar" in req:
  237. req["icon"] = req.pop("avatar")
  238. if "dataset_ids" in req:
  239. req.pop("dataset_ids")
  240. if not DialogService.update_by_id(chat_id, req):
  241. return get_error_data_result(message="Chat not found!")
  242. return get_result()
  243. @manager.route('/chats', methods=['DELETE']) # noqa: F821
  244. @token_required
  245. def delete(tenant_id):
  246. req = request.json
  247. if not req:
  248. ids = None
  249. else:
  250. ids = req.get("ids")
  251. if not ids:
  252. id_list = []
  253. dias = DialogService.query(tenant_id=tenant_id, status=StatusEnum.VALID.value)
  254. for dia in dias:
  255. id_list.append(dia.id)
  256. else:
  257. id_list = ids
  258. for id in id_list:
  259. if not DialogService.query(tenant_id=tenant_id, id=id, status=StatusEnum.VALID.value):
  260. return get_error_data_result(message=f"You don't own the chat {id}")
  261. temp_dict = {"status": StatusEnum.INVALID.value}
  262. DialogService.update_by_id(id, temp_dict)
  263. return get_result()
  264. @manager.route('/chats', methods=['GET']) # noqa: F821
  265. @token_required
  266. def list_chat(tenant_id):
  267. id = request.args.get("id")
  268. name = request.args.get("name")
  269. if id or name:
  270. chat = DialogService.query(id=id, name=name, status=StatusEnum.VALID.value, tenant_id=tenant_id)
  271. if not chat:
  272. return get_error_data_result(message="The chat doesn't exist")
  273. page_number = int(request.args.get("page", 1))
  274. items_per_page = int(request.args.get("page_size", 30))
  275. orderby = request.args.get("orderby", "create_time")
  276. if request.args.get("desc") == "False" or request.args.get("desc") == "false":
  277. desc = False
  278. else:
  279. desc = True
  280. chats = DialogService.get_list(tenant_id, page_number, items_per_page, orderby, desc, id, name)
  281. if not chats:
  282. return get_result(data=[])
  283. list_assts = []
  284. key_mapping = {"parameters": "variables",
  285. "prologue": "opener",
  286. "quote": "show_quote",
  287. "system": "prompt",
  288. "rerank_id": "rerank_model",
  289. "vector_similarity_weight": "keywords_similarity_weight",
  290. "do_refer": "show_quotation"}
  291. key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
  292. for res in chats:
  293. renamed_dict = {}
  294. for key, value in res["prompt_config"].items():
  295. new_key = key_mapping.get(key, key)
  296. renamed_dict[new_key] = value
  297. res["prompt"] = renamed_dict
  298. del res["prompt_config"]
  299. new_dict = {"similarity_threshold": res["similarity_threshold"],
  300. "keywords_similarity_weight": 1-res["vector_similarity_weight"],
  301. "top_n": res["top_n"],
  302. "rerank_model": res['rerank_id']}
  303. res["prompt"].update(new_dict)
  304. for key in key_list:
  305. del res[key]
  306. res["llm"] = res.pop("llm_setting")
  307. res["llm"]["model_name"] = res.pop("llm_id")
  308. kb_list = []
  309. for kb_id in res["kb_ids"]:
  310. kb = KnowledgebaseService.query(id=kb_id)
  311. if not kb:
  312. logging.warning(f"The kb {kb_id} does not exist.")
  313. continue
  314. kb_list.append(kb[0].to_json())
  315. del res["kb_ids"]
  316. res["datasets"] = kb_list
  317. res["avatar"] = res.pop("icon")
  318. list_assts.append(res)
  319. return get_result(data=list_assts)