| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415 | 
							- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import logging
 - import re
 - from functools import partial
 - 
 - from langfuse import Langfuse
 - 
 - from api import settings
 - from api.db import LLMType
 - from api.db.db_models import DB, LLM, LLMFactories, TenantLLM
 - from api.db.services.common_service import CommonService
 - from api.db.services.langfuse_service import TenantLangfuseService
 - from api.db.services.user_service import TenantService
 - from rag.llm import ChatModel, CvModel, EmbeddingModel, RerankModel, Seq2txtModel, TTSModel
 - 
 - 
 - class LLMFactoriesService(CommonService):
 -     model = LLMFactories
 - 
 - 
 - class LLMService(CommonService):
 -     model = LLM
 - 
 - 
 - class TenantLLMService(CommonService):
 -     model = TenantLLM
 - 
 -     @classmethod
 -     @DB.connection_context()
 -     def get_api_key(cls, tenant_id, model_name):
 -         mdlnm, fid = TenantLLMService.split_model_name_and_factory(model_name)
 -         if not fid:
 -             objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm)
 -         else:
 -             objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
 - 
 -         if (not objs) and fid:
 -             if fid == "LocalAI":
 -                 mdlnm += "___LocalAI"
 -             elif fid == "HuggingFace":
 -                 mdlnm += "___HuggingFace"
 -             elif fid == "OpenAI-API-Compatible":
 -                 mdlnm += "___OpenAI-API"
 -             elif fid == "VLLM":
 -                 mdlnm += "___VLLM"
 -                 
 -             objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
 -         if not objs:
 -             return
 -         return objs[0]
 - 
 -     @classmethod
 -     @DB.connection_context()
 -     def get_my_llms(cls, tenant_id):
 -         fields = [cls.model.llm_factory, LLMFactories.logo, LLMFactories.tags, cls.model.model_type, cls.model.llm_name, cls.model.used_tokens]
 -         objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
 - 
 -         return list(objs)
 - 
 -     @staticmethod
 -     def split_model_name_and_factory(model_name):
 -         arr = model_name.split("@")
 -         if len(arr) < 2:
 -             return model_name, None
 -         if len(arr) > 2:
 -             return "@".join(arr[0:-1]), arr[-1]
 - 
 -         # model name must be xxx@yyy
 -         try:
 -             model_factories = settings.FACTORY_LLM_INFOS
 -             model_providers = set([f["name"] for f in model_factories])
 -             if arr[-1] not in model_providers:
 -                 return model_name, None
 -             return arr[0], arr[-1]
 -         except Exception as e:
 -             logging.exception(f"TenantLLMService.split_model_name_and_factory got exception: {e}")
 -         return model_name, None
 - 
 -     @classmethod
 -     @DB.connection_context()
 -     def get_model_config(cls, tenant_id, llm_type, llm_name=None):
 -         e, tenant = TenantService.get_by_id(tenant_id)
 -         if not e:
 -             raise LookupError("Tenant not found")
 - 
 -         if llm_type == LLMType.EMBEDDING.value:
 -             mdlnm = tenant.embd_id if not llm_name else llm_name
 -         elif llm_type == LLMType.SPEECH2TEXT.value:
 -             mdlnm = tenant.asr_id
 -         elif llm_type == LLMType.IMAGE2TEXT.value:
 -             mdlnm = tenant.img2txt_id if not llm_name else llm_name
 -         elif llm_type == LLMType.CHAT.value:
 -             mdlnm = tenant.llm_id if not llm_name else llm_name
 -         elif llm_type == LLMType.RERANK:
 -             mdlnm = tenant.rerank_id if not llm_name else llm_name
 -         elif llm_type == LLMType.TTS:
 -             mdlnm = tenant.tts_id if not llm_name else llm_name
 -         else:
 -             assert False, "LLM type error"
 - 
 -         model_config = cls.get_api_key(tenant_id, mdlnm)
 -         mdlnm, fid = TenantLLMService.split_model_name_and_factory(mdlnm)
 -         if not model_config:  # for some cases seems fid mismatch
 -             model_config = cls.get_api_key(tenant_id, mdlnm)
 -         if model_config:
 -             model_config = model_config.to_dict()
 -             llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
 -             if not llm and fid:  # for some cases seems fid mismatch
 -                 llm = LLMService.query(llm_name=mdlnm)
 -             if llm:
 -                 model_config["is_tools"] = llm[0].is_tools
 -         if not model_config:
 -             if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]:
 -                 llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
 -                 if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]:
 -                     model_config = {"llm_factory": llm[0].fid, "api_key": "", "llm_name": mdlnm, "api_base": ""}
 -             if not model_config:
 -                 if mdlnm == "flag-embedding":
 -                     model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", "llm_name": llm_name, "api_base": ""}
 -                 else:
 -                     if not mdlnm:
 -                         raise LookupError(f"Type of {llm_type} model is not set.")
 -                     raise LookupError("Model({}) not authorized".format(mdlnm))
 -         return model_config
 - 
 -     @classmethod
 -     @DB.connection_context()
 -     def model_instance(cls, tenant_id, llm_type, llm_name=None, lang="Chinese", **kwargs):
 -         model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
 -         if llm_type == LLMType.EMBEDDING.value:
 -             if model_config["llm_factory"] not in EmbeddingModel:
 -                 return
 -             return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
 - 
 -         if llm_type == LLMType.RERANK:
 -             if model_config["llm_factory"] not in RerankModel:
 -                 return
 -             return RerankModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
 - 
 -         if llm_type == LLMType.IMAGE2TEXT.value:
 -             if model_config["llm_factory"] not in CvModel:
 -                 return
 -             return CvModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], lang, base_url=model_config["api_base"], **kwargs)
 - 
 -         if llm_type == LLMType.CHAT.value:
 -             if model_config["llm_factory"] not in ChatModel:
 -                 return
 -             return ChatModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"], **kwargs)
 - 
 -         if llm_type == LLMType.SPEECH2TEXT:
 -             if model_config["llm_factory"] not in Seq2txtModel:
 -                 return
 -             return Seq2txtModel[model_config["llm_factory"]](key=model_config["api_key"], model_name=model_config["llm_name"], lang=lang, base_url=model_config["api_base"])
 -         if llm_type == LLMType.TTS:
 -             if model_config["llm_factory"] not in TTSModel:
 -                 return
 -             return TTSModel[model_config["llm_factory"]](
 -                 model_config["api_key"],
 -                 model_config["llm_name"],
 -                 base_url=model_config["api_base"],
 -             )
 - 
 -     @classmethod
 -     @DB.connection_context()
 -     def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None):
 -         e, tenant = TenantService.get_by_id(tenant_id)
 -         if not e:
 -             logging.error(f"Tenant not found: {tenant_id}")
 -             return 0
 - 
 -         llm_map = {
 -             LLMType.EMBEDDING.value: tenant.embd_id if not llm_name else llm_name,
 -             LLMType.SPEECH2TEXT.value: tenant.asr_id,
 -             LLMType.IMAGE2TEXT.value: tenant.img2txt_id,
 -             LLMType.CHAT.value: tenant.llm_id if not llm_name else llm_name,
 -             LLMType.RERANK.value: tenant.rerank_id if not llm_name else llm_name,
 -             LLMType.TTS.value: tenant.tts_id if not llm_name else llm_name,
 -         }
 - 
 -         mdlnm = llm_map.get(llm_type)
 -         if mdlnm is None:
 -             logging.error(f"LLM type error: {llm_type}")
 -             return 0
 - 
 -         llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(mdlnm)
 - 
 -         try:
 -             num = (
 -                 cls.model.update(used_tokens=cls.model.used_tokens + used_tokens)
 -                 .where(cls.model.tenant_id == tenant_id, cls.model.llm_name == llm_name, cls.model.llm_factory == llm_factory if llm_factory else True)
 -                 .execute()
 -             )
 -         except Exception:
 -             logging.exception("TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s", tenant_id, llm_name)
 -             return 0
 - 
 -         return num
 - 
 -     @classmethod
 -     @DB.connection_context()
 -     def get_openai_models(cls):
 -         objs = cls.model.select().where((cls.model.llm_factory == "OpenAI"), ~(cls.model.llm_name == "text-embedding-3-small"), ~(cls.model.llm_name == "text-embedding-3-large")).dicts()
 -         return list(objs)
 - 
 -     @staticmethod
 -     def llm_id2llm_type(llm_id: str) ->str|None:
 -         llm_id, *_ = TenantLLMService.split_model_name_and_factory(llm_id)
 -         llm_factories = settings.FACTORY_LLM_INFOS
 -         for llm_factory in llm_factories:
 -             for llm in llm_factory["llm"]:
 -                 if llm_id == llm["llm_name"]:
 -                     return llm["model_type"].split(",")[-1]
 - 
 - 
 - class LLMBundle:
 -     def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese", **kwargs):
 -         self.tenant_id = tenant_id
 -         self.llm_type = llm_type
 -         self.llm_name = llm_name
 -         self.mdl = TenantLLMService.model_instance(tenant_id, llm_type, llm_name, lang=lang, **kwargs)
 -         assert self.mdl, "Can't find model for {}/{}/{}".format(tenant_id, llm_type, llm_name)
 -         model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
 -         self.max_length = model_config.get("max_tokens", 8192)
 - 
 -         self.is_tools = model_config.get("is_tools", False)
 -         self.verbose_tool_use = kwargs.get("verbose_tool_use")
 - 
 -         langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=tenant_id)
 -         if langfuse_keys:
 -             langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, host=langfuse_keys.host)
 -             if langfuse.auth_check():
 -                 self.langfuse = langfuse
 -                 self.trace = self.langfuse.trace(name=f"{self.llm_type}-{self.llm_name}")
 -         else:
 -             self.langfuse = None
 - 
 -     def bind_tools(self, toolcall_session, tools):
 -         if not self.is_tools:
 -             logging.warning(f"Model {self.llm_name} does not support tool call, but you have assigned one or more tools to it!")
 -             return
 -         self.mdl.bind_tools(toolcall_session, tools)
 - 
 -     def encode(self, texts: list):
 -         if self.langfuse:
 -             generation = self.trace.generation(name="encode", model=self.llm_name, input={"texts": texts})
 - 
 -         embeddings, used_tokens = self.mdl.encode(texts)
 -         llm_name = getattr(self, "llm_name", None)
 -         if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, llm_name):
 -             logging.error("LLMBundle.encode can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
 - 
 -         if self.langfuse:
 -             generation.end(usage_details={"total_tokens": used_tokens})
 - 
 -         return embeddings, used_tokens
 - 
 -     def encode_queries(self, query: str):
 -         if self.langfuse:
 -             generation = self.trace.generation(name="encode_queries", model=self.llm_name, input={"query": query})
 - 
 -         emd, used_tokens = self.mdl.encode_queries(query)
 -         llm_name = getattr(self, "llm_name", None)
 -         if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, llm_name):
 -             logging.error("LLMBundle.encode_queries can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
 - 
 -         if self.langfuse:
 -             generation.end(usage_details={"total_tokens": used_tokens})
 - 
 -         return emd, used_tokens
 - 
 -     def similarity(self, query: str, texts: list):
 -         if self.langfuse:
 -             generation = self.trace.generation(name="similarity", model=self.llm_name, input={"query": query, "texts": texts})
 - 
 -         sim, used_tokens = self.mdl.similarity(query, texts)
 -         if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
 -             logging.error("LLMBundle.similarity can't update token usage for {}/RERANK used_tokens: {}".format(self.tenant_id, used_tokens))
 - 
 -         if self.langfuse:
 -             generation.end(usage_details={"total_tokens": used_tokens})
 - 
 -         return sim, used_tokens
 - 
 -     def describe(self, image, max_tokens=300):
 -         if self.langfuse:
 -             generation = self.trace.generation(name="describe", metadata={"model": self.llm_name})
 - 
 -         txt, used_tokens = self.mdl.describe(image)
 -         if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
 -             logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
 - 
 -         if self.langfuse:
 -             generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
 - 
 -         return txt
 - 
 -     def describe_with_prompt(self, image, prompt):
 -         if self.langfuse:
 -             generation = self.trace.generation(name="describe_with_prompt", metadata={"model": self.llm_name, "prompt": prompt})
 - 
 -         txt, used_tokens = self.mdl.describe_with_prompt(image, prompt)
 -         if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
 -             logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
 - 
 -         if self.langfuse:
 -             generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
 - 
 -         return txt
 - 
 -     def transcription(self, audio):
 -         if self.langfuse:
 -             generation = self.trace.generation(name="transcription", metadata={"model": self.llm_name})
 - 
 -         txt, used_tokens = self.mdl.transcription(audio)
 -         if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
 -             logging.error("LLMBundle.transcription can't update token usage for {}/SEQUENCE2TXT used_tokens: {}".format(self.tenant_id, used_tokens))
 - 
 -         if self.langfuse:
 -             generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
 - 
 -         return txt
 - 
 -     def tts(self, text: str) -> None:
 -         if self.langfuse:
 -             span = self.trace.span(name="tts", input={"text": text})
 - 
 -         for chunk in self.mdl.tts(text):
 -             if isinstance(chunk, int):
 -                 if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, chunk, self.llm_name):
 -                     logging.error("LLMBundle.tts can't update token usage for {}/TTS".format(self.tenant_id))
 -                 return
 -             yield chunk
 - 
 -         if self.langfuse:
 -             span.end()
 - 
 -     def _remove_reasoning_content(self, txt: str) -> str:
 -         first_think_start = txt.find("<think>")
 -         if first_think_start == -1:
 -             return txt
 - 
 -         last_think_end = txt.rfind("</think>")
 -         if last_think_end == -1:
 -             return txt
 - 
 -         if last_think_end < first_think_start:
 -             return txt
 - 
 -         return txt[last_think_end + len("</think>") :]
 - 
 -     def chat(self, system: str, history: list, gen_conf: dict={}, **kwargs) -> str:
 -         if self.langfuse:
 -             generation = self.trace.generation(name="chat", model=self.llm_name, input={"system": system, "history": history})
 - 
 -         chat_partial = partial(self.mdl.chat, system, history, gen_conf)
 -         if self.is_tools and self.mdl.is_tools:
 -             chat_partial = partial(self.mdl.chat_with_tools, system, history, gen_conf)
 - 
 -         txt, used_tokens = chat_partial(**kwargs)
 -         txt = self._remove_reasoning_content(txt)
 - 
 -         if not self.verbose_tool_use:
 -             txt = re.sub(r"<tool_call>.*?</tool_call>", "", txt, flags=re.DOTALL)
 - 
 -         if isinstance(txt, int) and not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, self.llm_name):
 -             logging.error("LLMBundle.chat can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, used_tokens))
 - 
 -         if self.langfuse:
 -             generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
 - 
 -         return txt
 - 
 -     def chat_streamly(self, system: str, history: list, gen_conf: dict={}, **kwargs):
 -         if self.langfuse:
 -             generation = self.trace.generation(name="chat_streamly", model=self.llm_name, input={"system": system, "history": history})
 - 
 -         ans = ""
 -         chat_partial = partial(self.mdl.chat_streamly, system, history, gen_conf)
 -         total_tokens = 0
 -         if self.is_tools and self.mdl.is_tools:
 -             chat_partial = partial(self.mdl.chat_streamly_with_tools, system, history, gen_conf)
 - 
 -         for txt in chat_partial(**kwargs):
 -             if isinstance(txt, int):
 -                 total_tokens = txt
 -                 if self.langfuse:
 -                     generation.end(output={"output": ans})
 -                 break
 - 
 -             if txt.endswith("</think>"):
 -                 ans = ans.rstrip("</think>")
 - 
 -             if not self.verbose_tool_use:
 -                 txt = re.sub(r"<tool_call>.*?</tool_call>", "", txt, flags=re.DOTALL)
 - 
 -             ans += txt
 -             yield ans
 - 
 -         if total_tokens > 0:
 -             if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, txt, self.llm_name):
 -                 logging.error("LLMBundle.chat_streamly can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name, txt))
 
 
  |