Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

cv_model.py 27KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. from openai.lib.azure import AzureOpenAI
  17. from zhipuai import ZhipuAI
  18. import io
  19. from abc import ABC
  20. from ollama import Client
  21. from PIL import Image
  22. from openai import OpenAI
  23. import os
  24. import base64
  25. from io import BytesIO
  26. import json
  27. import requests
  28. from rag.nlp import is_english
  29. from api.utils import get_uuid
  30. from api.utils.file_utils import get_project_base_directory
  31. class Base(ABC):
  32. def __init__(self, key, model_name):
  33. pass
  34. def describe(self, image, max_tokens=300):
  35. raise NotImplementedError("Please implement encode method!")
  36. def chat(self, system, history, gen_conf, image=""):
  37. if system:
  38. history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
  39. try:
  40. for his in history:
  41. if his["role"] == "user":
  42. his["content"] = self.chat_prompt(his["content"], image)
  43. response = self.client.chat.completions.create(
  44. model=self.model_name,
  45. messages=history,
  46. max_tokens=gen_conf.get("max_tokens", 1000),
  47. temperature=gen_conf.get("temperature", 0.3),
  48. top_p=gen_conf.get("top_p", 0.7)
  49. )
  50. return response.choices[0].message.content.strip(), response.usage.total_tokens
  51. except Exception as e:
  52. return "**ERROR**: " + str(e), 0
  53. def chat_streamly(self, system, history, gen_conf, image=""):
  54. if system:
  55. history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
  56. ans = ""
  57. tk_count = 0
  58. try:
  59. for his in history:
  60. if his["role"] == "user":
  61. his["content"] = self.chat_prompt(his["content"], image)
  62. response = self.client.chat.completions.create(
  63. model=self.model_name,
  64. messages=history,
  65. max_tokens=gen_conf.get("max_tokens", 1000),
  66. temperature=gen_conf.get("temperature", 0.3),
  67. top_p=gen_conf.get("top_p", 0.7),
  68. stream=True
  69. )
  70. for resp in response:
  71. if not resp.choices[0].delta.content: continue
  72. delta = resp.choices[0].delta.content
  73. ans += delta
  74. if resp.choices[0].finish_reason == "length":
  75. ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
  76. [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
  77. tk_count = resp.usage.total_tokens
  78. if resp.choices[0].finish_reason == "stop": tk_count = resp.usage.total_tokens
  79. yield ans
  80. except Exception as e:
  81. yield ans + "\n**ERROR**: " + str(e)
  82. yield tk_count
  83. def image2base64(self, image):
  84. if isinstance(image, bytes):
  85. return base64.b64encode(image).decode("utf-8")
  86. if isinstance(image, BytesIO):
  87. return base64.b64encode(image.getvalue()).decode("utf-8")
  88. buffered = BytesIO()
  89. try:
  90. image.save(buffered, format="JPEG")
  91. except Exception as e:
  92. image.save(buffered, format="PNG")
  93. return base64.b64encode(buffered.getvalue()).decode("utf-8")
  94. def prompt(self, b64):
  95. return [
  96. {
  97. "role": "user",
  98. "content": [
  99. {
  100. "type": "image_url",
  101. "image_url": {
  102. "url": f"data:image/jpeg;base64,{b64}"
  103. },
  104. },
  105. {
  106. "text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
  107. "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
  108. },
  109. ],
  110. }
  111. ]
  112. def chat_prompt(self, text, b64):
  113. return [
  114. {
  115. "type": "image_url",
  116. "image_url": {
  117. "url": f"data:image/jpeg;base64,{b64}",
  118. },
  119. },
  120. {
  121. "type": "text",
  122. "text": text
  123. },
  124. ]
  125. class GptV4(Base):
  126. def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1"):
  127. if not base_url: base_url="https://api.openai.com/v1"
  128. self.client = OpenAI(api_key=key, base_url=base_url)
  129. self.model_name = model_name
  130. self.lang = lang
  131. def describe(self, image, max_tokens=300):
  132. b64 = self.image2base64(image)
  133. prompt = self.prompt(b64)
  134. for i in range(len(prompt)):
  135. for c in prompt[i]["content"]:
  136. if "text" in c: c["type"] = "text"
  137. res = self.client.chat.completions.create(
  138. model=self.model_name,
  139. messages=prompt,
  140. max_tokens=max_tokens,
  141. )
  142. return res.choices[0].message.content.strip(), res.usage.total_tokens
  143. class AzureGptV4(Base):
  144. def __init__(self, key, model_name, lang="Chinese", **kwargs):
  145. self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
  146. self.model_name = model_name
  147. self.lang = lang
  148. def describe(self, image, max_tokens=300):
  149. b64 = self.image2base64(image)
  150. prompt = self.prompt(b64)
  151. for i in range(len(prompt)):
  152. for c in prompt[i]["content"]:
  153. if "text" in c: c["type"] = "text"
  154. res = self.client.chat.completions.create(
  155. model=self.model_name,
  156. messages=prompt,
  157. max_tokens=max_tokens,
  158. )
  159. return res.choices[0].message.content.strip(), res.usage.total_tokens
  160. class QWenCV(Base):
  161. def __init__(self, key, model_name="qwen-vl-chat-v1", lang="Chinese", **kwargs):
  162. import dashscope
  163. dashscope.api_key = key
  164. self.model_name = model_name
  165. self.lang = lang
  166. def prompt(self, binary):
  167. # stupid as hell
  168. tmp_dir = get_project_base_directory("tmp")
  169. if not os.path.exists(tmp_dir):
  170. os.mkdir(tmp_dir)
  171. path = os.path.join(tmp_dir, "%s.jpg" % get_uuid())
  172. Image.open(io.BytesIO(binary)).save(path)
  173. return [
  174. {
  175. "role": "user",
  176. "content": [
  177. {
  178. "image": f"file://{path}"
  179. },
  180. {
  181. "text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
  182. "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
  183. },
  184. ],
  185. }
  186. ]
  187. def chat_prompt(self, text, b64):
  188. return [
  189. {"image": f"{b64}"},
  190. {"text": text},
  191. ]
  192. def describe(self, image, max_tokens=300):
  193. from http import HTTPStatus
  194. from dashscope import MultiModalConversation
  195. response = MultiModalConversation.call(model=self.model_name,
  196. messages=self.prompt(image))
  197. if response.status_code == HTTPStatus.OK:
  198. return response.output.choices[0]['message']['content'][0]["text"], response.usage.output_tokens
  199. return response.message, 0
  200. def chat(self, system, history, gen_conf, image=""):
  201. from http import HTTPStatus
  202. from dashscope import MultiModalConversation
  203. if system:
  204. history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
  205. for his in history:
  206. if his["role"] == "user":
  207. his["content"] = self.chat_prompt(his["content"], image)
  208. response = MultiModalConversation.call(model=self.model_name, messages=history,
  209. max_tokens=gen_conf.get("max_tokens", 1000),
  210. temperature=gen_conf.get("temperature", 0.3),
  211. top_p=gen_conf.get("top_p", 0.7))
  212. ans = ""
  213. tk_count = 0
  214. if response.status_code == HTTPStatus.OK:
  215. ans += response.output.choices[0]['message']['content']
  216. tk_count += response.usage.total_tokens
  217. if response.output.choices[0].get("finish_reason", "") == "length":
  218. ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
  219. [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
  220. return ans, tk_count
  221. return "**ERROR**: " + response.message, tk_count
  222. def chat_streamly(self, system, history, gen_conf, image=""):
  223. from http import HTTPStatus
  224. from dashscope import MultiModalConversation
  225. if system:
  226. history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
  227. for his in history:
  228. if his["role"] == "user":
  229. his["content"] = self.chat_prompt(his["content"], image)
  230. ans = ""
  231. tk_count = 0
  232. try:
  233. response = MultiModalConversation.call(model=self.model_name, messages=history,
  234. max_tokens=gen_conf.get("max_tokens", 1000),
  235. temperature=gen_conf.get("temperature", 0.3),
  236. top_p=gen_conf.get("top_p", 0.7),
  237. stream=True)
  238. for resp in response:
  239. if resp.status_code == HTTPStatus.OK:
  240. ans = resp.output.choices[0]['message']['content']
  241. tk_count = resp.usage.total_tokens
  242. if resp.output.choices[0].get("finish_reason", "") == "length":
  243. ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
  244. [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
  245. yield ans
  246. else:
  247. yield ans + "\n**ERROR**: " + resp.message if str(resp.message).find(
  248. "Access") < 0 else "Out of credit. Please set the API key in **settings > Model providers.**"
  249. except Exception as e:
  250. yield ans + "\n**ERROR**: " + str(e)
  251. yield tk_count
  252. class Zhipu4V(Base):
  253. def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
  254. self.client = ZhipuAI(api_key=key)
  255. self.model_name = model_name
  256. self.lang = lang
  257. def describe(self, image, max_tokens=1024):
  258. b64 = self.image2base64(image)
  259. res = self.client.chat.completions.create(
  260. model=self.model_name,
  261. messages=self.prompt(b64),
  262. max_tokens=max_tokens,
  263. )
  264. return res.choices[0].message.content.strip(), res.usage.total_tokens
  265. def chat(self, system, history, gen_conf, image=""):
  266. if system:
  267. history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
  268. try:
  269. for his in history:
  270. if his["role"] == "user":
  271. his["content"] = self.chat_prompt(his["content"], image)
  272. response = self.client.chat.completions.create(
  273. model=self.model_name,
  274. messages=history,
  275. max_tokens=gen_conf.get("max_tokens", 1000),
  276. temperature=gen_conf.get("temperature", 0.3),
  277. top_p=gen_conf.get("top_p", 0.7)
  278. )
  279. return response.choices[0].message.content.strip(), response.usage.total_tokens
  280. except Exception as e:
  281. return "**ERROR**: " + str(e), 0
  282. def chat_streamly(self, system, history, gen_conf, image=""):
  283. if system:
  284. history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
  285. ans = ""
  286. tk_count = 0
  287. try:
  288. for his in history:
  289. if his["role"] == "user":
  290. his["content"] = self.chat_prompt(his["content"], image)
  291. response = self.client.chat.completions.create(
  292. model=self.model_name,
  293. messages=history,
  294. max_tokens=gen_conf.get("max_tokens", 1000),
  295. temperature=gen_conf.get("temperature", 0.3),
  296. top_p=gen_conf.get("top_p", 0.7),
  297. stream=True
  298. )
  299. for resp in response:
  300. if not resp.choices[0].delta.content: continue
  301. delta = resp.choices[0].delta.content
  302. ans += delta
  303. if resp.choices[0].finish_reason == "length":
  304. ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
  305. [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
  306. tk_count = resp.usage.total_tokens
  307. if resp.choices[0].finish_reason == "stop": tk_count = resp.usage.total_tokens
  308. yield ans
  309. except Exception as e:
  310. yield ans + "\n**ERROR**: " + str(e)
  311. yield tk_count
  312. class OllamaCV(Base):
  313. def __init__(self, key, model_name, lang="Chinese", **kwargs):
  314. self.client = Client(host=kwargs["base_url"])
  315. self.model_name = model_name
  316. self.lang = lang
  317. def describe(self, image, max_tokens=1024):
  318. prompt = self.prompt("")
  319. try:
  320. options = {"num_predict": max_tokens}
  321. response = self.client.generate(
  322. model=self.model_name,
  323. prompt=prompt[0]["content"][1]["text"],
  324. images=[image],
  325. options=options
  326. )
  327. ans = response["response"].strip()
  328. return ans, 128
  329. except Exception as e:
  330. return "**ERROR**: " + str(e), 0
  331. def chat(self, system, history, gen_conf, image=""):
  332. if system:
  333. history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
  334. try:
  335. for his in history:
  336. if his["role"] == "user":
  337. his["images"] = [image]
  338. options = {}
  339. if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
  340. if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
  341. if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"]
  342. if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
  343. if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
  344. response = self.client.chat(
  345. model=self.model_name,
  346. messages=history,
  347. options=options,
  348. keep_alive=-1
  349. )
  350. ans = response["message"]["content"].strip()
  351. return ans, response["eval_count"] + response.get("prompt_eval_count", 0)
  352. except Exception as e:
  353. return "**ERROR**: " + str(e), 0
  354. def chat_streamly(self, system, history, gen_conf, image=""):
  355. if system:
  356. history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
  357. for his in history:
  358. if his["role"] == "user":
  359. his["images"] = [image]
  360. options = {}
  361. if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
  362. if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
  363. if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"]
  364. if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
  365. if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
  366. ans = ""
  367. try:
  368. response = self.client.chat(
  369. model=self.model_name,
  370. messages=history,
  371. stream=True,
  372. options=options,
  373. keep_alive=-1
  374. )
  375. for resp in response:
  376. if resp["done"]:
  377. yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
  378. ans += resp["message"]["content"]
  379. yield ans
  380. except Exception as e:
  381. yield ans + "\n**ERROR**: " + str(e)
  382. yield 0
  383. class LocalAICV(Base):
  384. def __init__(self, key, model_name, base_url, lang="Chinese"):
  385. self.client = OpenAI(api_key="empty", base_url=base_url)
  386. self.model_name = model_name.split("___")[0]
  387. self.lang = lang
  388. def describe(self, image, max_tokens=300):
  389. b64 = self.image2base64(image)
  390. prompt = self.prompt(b64)
  391. for i in range(len(prompt)):
  392. for c in prompt[i]["content"]:
  393. if "text" in c:
  394. c["type"] = "text"
  395. res = self.client.chat.completions.create(
  396. model=self.model_name,
  397. messages=prompt,
  398. max_tokens=max_tokens,
  399. )
  400. return res.choices[0].message.content.strip(), res.usage.total_tokens
  401. class XinferenceCV(Base):
  402. def __init__(self, key, model_name="", lang="Chinese", base_url=""):
  403. self.client = OpenAI(api_key="xxx", base_url=base_url)
  404. self.model_name = model_name
  405. self.lang = lang
  406. def describe(self, image, max_tokens=300):
  407. b64 = self.image2base64(image)
  408. res = self.client.chat.completions.create(
  409. model=self.model_name,
  410. messages=self.prompt(b64),
  411. max_tokens=max_tokens,
  412. )
  413. return res.choices[0].message.content.strip(), res.usage.total_tokens
  414. class GeminiCV(Base):
  415. def __init__(self, key, model_name="gemini-1.0-pro-vision-latest", lang="Chinese", **kwargs):
  416. from google.generativeai import client, GenerativeModel, GenerationConfig
  417. client.configure(api_key=key)
  418. _client = client.get_default_generative_client()
  419. self.model_name = model_name
  420. self.model = GenerativeModel(model_name=self.model_name)
  421. self.model._client = _client
  422. self.lang = lang
  423. def describe(self, image, max_tokens=2048):
  424. from PIL.Image import open
  425. gen_config = {'max_output_tokens':max_tokens}
  426. prompt = "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else \
  427. "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
  428. b64 = self.image2base64(image)
  429. img = open(BytesIO(base64.b64decode(b64)))
  430. input = [prompt,img]
  431. res = self.model.generate_content(
  432. input,
  433. generation_config=gen_config,
  434. )
  435. return res.text,res.usage_metadata.total_token_count
  436. def chat(self, system, history, gen_conf, image=""):
  437. if system:
  438. history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
  439. try:
  440. for his in history:
  441. if his["role"] == "assistant":
  442. his["role"] = "model"
  443. his["parts"] = [his["content"]]
  444. his.pop("content")
  445. if his["role"] == "user":
  446. his["parts"] = [his["content"]]
  447. his.pop("content")
  448. history[-1]["parts"].append(f"data:image/jpeg;base64," + image)
  449. response = self.model.generate_content(history, generation_config=GenerationConfig(
  450. max_output_tokens=gen_conf.get("max_tokens", 1000), temperature=gen_conf.get("temperature", 0.3),
  451. top_p=gen_conf.get("top_p", 0.7)))
  452. ans = response.text
  453. return ans, response.usage_metadata.total_token_count
  454. except Exception as e:
  455. return "**ERROR**: " + str(e), 0
  456. def chat_streamly(self, system, history, gen_conf, image=""):
  457. if system:
  458. history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
  459. ans = ""
  460. tk_count = 0
  461. try:
  462. for his in history:
  463. if his["role"] == "assistant":
  464. his["role"] = "model"
  465. his["parts"] = [his["content"]]
  466. his.pop("content")
  467. if his["role"] == "user":
  468. his["parts"] = [his["content"]]
  469. his.pop("content")
  470. history[-1]["parts"].append(f"data:image/jpeg;base64," + image)
  471. response = self.model.generate_content(history, generation_config=GenerationConfig(
  472. max_output_tokens=gen_conf.get("max_tokens", 1000), temperature=gen_conf.get("temperature", 0.3),
  473. top_p=gen_conf.get("top_p", 0.7)), stream=True)
  474. for resp in response:
  475. if not resp.text: continue
  476. ans += resp.text
  477. yield ans
  478. except Exception as e:
  479. yield ans + "\n**ERROR**: " + str(e)
  480. yield response._chunks[-1].usage_metadata.total_token_count
  481. class OpenRouterCV(Base):
  482. def __init__(
  483. self,
  484. key,
  485. model_name,
  486. lang="Chinese",
  487. base_url="https://openrouter.ai/api/v1/chat/completions",
  488. ):
  489. self.model_name = model_name
  490. self.lang = lang
  491. self.base_url = "https://openrouter.ai/api/v1/chat/completions"
  492. self.key = key
  493. def describe(self, image, max_tokens=300):
  494. b64 = self.image2base64(image)
  495. response = requests.post(
  496. url=self.base_url,
  497. headers={
  498. "Authorization": f"Bearer {self.key}",
  499. },
  500. data=json.dumps(
  501. {
  502. "model": self.model_name,
  503. "messages": self.prompt(b64),
  504. "max_tokens": max_tokens,
  505. }
  506. ),
  507. )
  508. response = response.json()
  509. return (
  510. response["choices"][0]["message"]["content"].strip(),
  511. response["usage"]["total_tokens"],
  512. )
  513. def prompt(self, b64):
  514. return [
  515. {
  516. "role": "user",
  517. "content": [
  518. {
  519. "type": "image_url",
  520. "image_url": {"url": f"data:image/jpeg;base64,{b64}"},
  521. },
  522. {
  523. "type": "text",
  524. "text": (
  525. "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
  526. if self.lang.lower() == "chinese"
  527. else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
  528. ),
  529. },
  530. ],
  531. }
  532. ]
  533. class LocalCV(Base):
  534. def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
  535. pass
  536. def describe(self, image, max_tokens=1024):
  537. return "", 0
  538. class NvidiaCV(Base):
  539. def __init__(
  540. self,
  541. key,
  542. model_name,
  543. lang="Chinese",
  544. base_url="https://ai.api.nvidia.com/v1/vlm",
  545. ):
  546. if not base_url:
  547. base_url = ("https://ai.api.nvidia.com/v1/vlm",)
  548. self.lang = lang
  549. factory, llm_name = model_name.split("/")
  550. if factory != "liuhaotian":
  551. self.base_url = os.path.join(base_url, factory, llm_name)
  552. else:
  553. self.base_url = os.path.join(
  554. base_url, "community", llm_name.replace("-v1.6", "16")
  555. )
  556. self.key = key
  557. def describe(self, image, max_tokens=1024):
  558. b64 = self.image2base64(image)
  559. response = requests.post(
  560. url=self.base_url,
  561. headers={
  562. "accept": "application/json",
  563. "content-type": "application/json",
  564. "Authorization": f"Bearer {self.key}",
  565. },
  566. json={
  567. "messages": self.prompt(b64),
  568. "max_tokens": max_tokens,
  569. },
  570. )
  571. response = response.json()
  572. return (
  573. response["choices"][0]["message"]["content"].strip(),
  574. response["usage"]["total_tokens"],
  575. )
  576. def prompt(self, b64):
  577. return [
  578. {
  579. "role": "user",
  580. "content": (
  581. "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
  582. if self.lang.lower() == "chinese"
  583. else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
  584. )
  585. + f' <img src="data:image/jpeg;base64,{b64}"/>',
  586. }
  587. ]
  588. def chat_prompt(self, text, b64):
  589. return [
  590. {
  591. "role": "user",
  592. "content": text + f' <img src="data:image/jpeg;base64,{b64}"/>',
  593. }
  594. ]
  595. class LmStudioCV(LocalAICV):
  596. def __init__(self, key, model_name, base_url, lang="Chinese"):
  597. if not base_url:
  598. raise ValueError("Local llm url cannot be None")
  599. if base_url.split('/')[-1] != 'v1':
  600. self.base_url = os.path.join(base_url,'v1')
  601. self.client = OpenAI(api_key="lm-studio", base_url=self.base_url)
  602. self.model_name = model_name
  603. self.lang = lang