You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

llm_app.py 12KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import json
  17. from flask import request
  18. from flask_login import login_required, current_user
  19. from api.db.services.llm_service import LLMFactoriesService, TenantLLMService, LLMService
  20. from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
  21. from api.db import StatusEnum, LLMType
  22. from api.db.db_models import TenantLLM
  23. from api.utils.api_utils import get_json_result
  24. from rag.llm import EmbeddingModel, ChatModel, RerankModel, CvModel, TTSModel
  25. import requests
  26. @manager.route('/factories', methods=['GET'])
  27. @login_required
  28. def factories():
  29. try:
  30. fac = LLMFactoriesService.get_all()
  31. fac = [f.to_dict() for f in fac if f.name not in ["Youdao", "FastEmbed", "BAAI"]]
  32. llms = LLMService.get_all()
  33. mdl_types = {}
  34. for m in llms:
  35. if m.status != StatusEnum.VALID.value:
  36. continue
  37. if m.fid not in mdl_types:
  38. mdl_types[m.fid] = set([])
  39. mdl_types[m.fid].add(m.model_type)
  40. for f in fac:
  41. f["model_types"] = list(mdl_types.get(f["name"], [LLMType.CHAT, LLMType.EMBEDDING, LLMType.RERANK,
  42. LLMType.IMAGE2TEXT, LLMType.SPEECH2TEXT, LLMType.TTS]))
  43. return get_json_result(data=fac)
  44. except Exception as e:
  45. return server_error_response(e)
  46. @manager.route('/set_api_key', methods=['POST'])
  47. @login_required
  48. @validate_request("llm_factory", "api_key")
  49. def set_api_key():
  50. req = request.json
  51. # test if api key works
  52. chat_passed, embd_passed, rerank_passed = False, False, False
  53. factory = req["llm_factory"]
  54. msg = ""
  55. for llm in LLMService.query(fid=factory)[:3]:
  56. if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
  57. mdl = EmbeddingModel[factory](
  58. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  59. try:
  60. arr, tc = mdl.encode(["Test if the api key is available"])
  61. if len(arr[0]) == 0:
  62. raise Exception("Fail")
  63. embd_passed = True
  64. except Exception as e:
  65. msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
  66. elif not chat_passed and llm.model_type == LLMType.CHAT.value:
  67. mdl = ChatModel[factory](
  68. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  69. try:
  70. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}],
  71. {"temperature": 0.9,'max_tokens':50})
  72. if m.find("**ERROR**") >=0:
  73. raise Exception(m)
  74. except Exception as e:
  75. msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
  76. e)
  77. chat_passed = True
  78. elif not rerank_passed and llm.model_type == LLMType.RERANK:
  79. mdl = RerankModel[factory](
  80. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  81. try:
  82. arr, tc = mdl.similarity("What's the weather?", ["Is it sunny today?"])
  83. if len(arr) == 0 or tc == 0:
  84. raise Exception("Fail")
  85. except Exception as e:
  86. msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
  87. e)
  88. rerank_passed = True
  89. if msg:
  90. return get_data_error_result(retmsg=msg)
  91. llm_config = {
  92. "api_key": req["api_key"],
  93. "api_base": req.get("base_url", "")
  94. }
  95. for n in ["model_type", "llm_name"]:
  96. if n in req:
  97. llm_config[n] = req[n]
  98. for llm in LLMService.query(fid=factory):
  99. if not TenantLLMService.filter_update(
  100. [TenantLLM.tenant_id == current_user.id,
  101. TenantLLM.llm_factory == factory,
  102. TenantLLM.llm_name == llm.llm_name],
  103. llm_config):
  104. TenantLLMService.save(
  105. tenant_id=current_user.id,
  106. llm_factory=factory,
  107. llm_name=llm.llm_name,
  108. model_type=llm.model_type,
  109. api_key=llm_config["api_key"],
  110. api_base=llm_config["api_base"]
  111. )
  112. return get_json_result(data=True)
  113. @manager.route('/add_llm', methods=['POST'])
  114. @login_required
  115. @validate_request("llm_factory")
  116. def add_llm():
  117. req = request.json
  118. factory = req["llm_factory"]
  119. def apikey_json(keys):
  120. nonlocal req
  121. return json.dumps({k: req.get(k, "") for k in keys})
  122. if factory == "VolcEngine":
  123. # For VolcEngine, due to its special authentication method
  124. # Assemble ark_api_key endpoint_id into api_key
  125. llm_name = req["llm_name"]
  126. api_key = apikey_json(["ark_api_key", "endpoint_id"])
  127. elif factory == "Tencent Hunyuan":
  128. req["api_key"] = apikey_json(["hunyuan_sid", "hunyuan_sk"])
  129. return set_api_key()
  130. elif factory == "Tencent Cloud":
  131. req["api_key"] = apikey_json(["tencent_cloud_sid", "tencent_cloud_sk"])
  132. elif factory == "Bedrock":
  133. # For Bedrock, due to its special authentication method
  134. # Assemble bedrock_ak, bedrock_sk, bedrock_region
  135. llm_name = req["llm_name"]
  136. api_key = apikey_json(["bedrock_ak", "bedrock_sk", "bedrock_region"])
  137. elif factory == "LocalAI":
  138. llm_name = req["llm_name"]+"___LocalAI"
  139. api_key = "xxxxxxxxxxxxxxx"
  140. elif factory == "OpenAI-API-Compatible":
  141. llm_name = req["llm_name"]+"___OpenAI-API"
  142. api_key = req.get("api_key","xxxxxxxxxxxxxxx")
  143. elif factory =="XunFei Spark":
  144. llm_name = req["llm_name"]
  145. api_key = req.get("spark_api_password","xxxxxxxxxxxxxxx")
  146. elif factory == "BaiduYiyan":
  147. llm_name = req["llm_name"]
  148. api_key = apikey_json(["yiyan_ak", "yiyan_sk"])
  149. elif factory == "Fish Audio":
  150. llm_name = req["llm_name"]
  151. api_key = apikey_json(["fish_audio_ak", "fish_audio_refid"])
  152. elif factory == "Google Cloud":
  153. llm_name = req["llm_name"]
  154. api_key = apikey_json(["google_project_id", "google_region", "google_service_account_key"])
  155. else:
  156. llm_name = req["llm_name"]
  157. api_key = req.get("api_key", "xxxxxxxxxxxxxxx")
  158. llm = {
  159. "tenant_id": current_user.id,
  160. "llm_factory": factory,
  161. "model_type": req["model_type"],
  162. "llm_name": llm_name,
  163. "api_base": req.get("api_base", ""),
  164. "api_key": api_key
  165. }
  166. msg = ""
  167. if llm["model_type"] == LLMType.EMBEDDING.value:
  168. mdl = EmbeddingModel[factory](
  169. key=llm['api_key'],
  170. model_name=llm["llm_name"],
  171. base_url=llm["api_base"])
  172. try:
  173. arr, tc = mdl.encode(["Test if the api key is available"])
  174. if len(arr[0]) == 0 or tc == 0:
  175. raise Exception("Fail")
  176. except Exception as e:
  177. msg += f"\nFail to access embedding model({llm['llm_name']})." + str(e)
  178. elif llm["model_type"] == LLMType.CHAT.value:
  179. mdl = ChatModel[factory](
  180. key=llm['api_key'],
  181. model_name=llm["llm_name"],
  182. base_url=llm["api_base"]
  183. )
  184. try:
  185. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
  186. "temperature": 0.9})
  187. if not tc:
  188. raise Exception(m)
  189. except Exception as e:
  190. msg += f"\nFail to access model({llm['llm_name']})." + str(
  191. e)
  192. elif llm["model_type"] == LLMType.RERANK:
  193. mdl = RerankModel[factory](
  194. key=llm["api_key"],
  195. model_name=llm["llm_name"],
  196. base_url=llm["api_base"]
  197. )
  198. try:
  199. arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!"])
  200. if len(arr) == 0 or tc == 0:
  201. raise Exception("Not known.")
  202. except Exception as e:
  203. msg += f"\nFail to access model({llm['llm_name']})." + str(
  204. e)
  205. elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
  206. mdl = CvModel[factory](
  207. key=llm["api_key"],
  208. model_name=llm["llm_name"],
  209. base_url=llm["api_base"]
  210. )
  211. try:
  212. img_url = (
  213. "https://upload.wikimedia.org/wikipedia/comm"
  214. "ons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/256"
  215. "0px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
  216. )
  217. res = requests.get(img_url)
  218. if res.status_code == 200:
  219. m, tc = mdl.describe(res.content)
  220. if not tc:
  221. raise Exception(m)
  222. else:
  223. pass
  224. except Exception as e:
  225. msg += f"\nFail to access model({llm['llm_name']})." + str(e)
  226. elif llm["model_type"] == LLMType.TTS:
  227. mdl = TTSModel[factory](
  228. key=llm["api_key"], model_name=llm["llm_name"], base_url=llm["api_base"]
  229. )
  230. try:
  231. for resp in mdl.tts("Hello~ Ragflower!"):
  232. pass
  233. except RuntimeError as e:
  234. msg += f"\nFail to access model({llm['llm_name']})." + str(e)
  235. else:
  236. # TODO: check other type of models
  237. pass
  238. if msg:
  239. return get_data_error_result(retmsg=msg)
  240. if not TenantLLMService.filter_update(
  241. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory, TenantLLM.llm_name == llm["llm_name"]], llm):
  242. TenantLLMService.save(**llm)
  243. return get_json_result(data=True)
  244. @manager.route('/delete_llm', methods=['POST'])
  245. @login_required
  246. @validate_request("llm_factory", "llm_name")
  247. def delete_llm():
  248. req = request.json
  249. TenantLLMService.filter_delete(
  250. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"], TenantLLM.llm_name == req["llm_name"]])
  251. return get_json_result(data=True)
  252. @manager.route('/my_llms', methods=['GET'])
  253. @login_required
  254. def my_llms():
  255. try:
  256. res = {}
  257. for o in TenantLLMService.get_my_llms(current_user.id):
  258. if o["llm_factory"] not in res:
  259. res[o["llm_factory"]] = {
  260. "tags": o["tags"],
  261. "llm": []
  262. }
  263. res[o["llm_factory"]]["llm"].append({
  264. "type": o["model_type"],
  265. "name": o["llm_name"],
  266. "used_token": o["used_tokens"]
  267. })
  268. return get_json_result(data=res)
  269. except Exception as e:
  270. return server_error_response(e)
  271. @manager.route('/list', methods=['GET'])
  272. @login_required
  273. def list_app():
  274. self_deploied = ["Youdao","FastEmbed", "BAAI", "Ollama", "Xinference", "LocalAI", "LM-Studio"]
  275. model_type = request.args.get("model_type")
  276. try:
  277. objs = TenantLLMService.query(tenant_id=current_user.id)
  278. facts = set([o.to_dict()["llm_factory"] for o in objs if o.api_key])
  279. llms = LLMService.get_all()
  280. llms = [m.to_dict()
  281. for m in llms if m.status == StatusEnum.VALID.value]
  282. for m in llms:
  283. m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in self_deploied
  284. llm_set = set([m["llm_name"] for m in llms])
  285. for o in objs:
  286. if not o.api_key:continue
  287. if o.llm_name in llm_set:continue
  288. llms.append({"llm_name": o.llm_name, "model_type": o.model_type, "fid": o.llm_factory, "available": True})
  289. res = {}
  290. for m in llms:
  291. if model_type and m["model_type"].find(model_type)<0:
  292. continue
  293. if m["fid"] not in res:
  294. res[m["fid"]] = []
  295. res[m["fid"]].append(m)
  296. return get_json_result(data=res)
  297. except Exception as e:
  298. return server_error_response(e)