| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import json
-
- from flask import request
- from flask_login import login_required, current_user
- from api.db.services.llm_service import LLMFactoriesService, TenantLLMService, LLMService
- from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
- from api.db import StatusEnum, LLMType
- from api.db.db_models import TenantLLM
- from api.utils.api_utils import get_json_result
- from rag.llm import EmbeddingModel, ChatModel, RerankModel, CvModel, TTSModel
- import requests
-
-
- @manager.route('/factories', methods=['GET'])
- @login_required
- def factories():
- try:
- fac = LLMFactoriesService.get_all()
- fac = [f.to_dict() for f in fac if f.name not in ["Youdao", "FastEmbed", "BAAI"]]
- llms = LLMService.get_all()
- mdl_types = {}
- for m in llms:
- if m.status != StatusEnum.VALID.value:
- continue
- if m.fid not in mdl_types:
- mdl_types[m.fid] = set([])
- mdl_types[m.fid].add(m.model_type)
- for f in fac:
- f["model_types"] = list(mdl_types.get(f["name"], [LLMType.CHAT, LLMType.EMBEDDING, LLMType.RERANK,
- LLMType.IMAGE2TEXT, LLMType.SPEECH2TEXT, LLMType.TTS]))
- return get_json_result(data=fac)
- except Exception as e:
- return server_error_response(e)
-
-
- @manager.route('/set_api_key', methods=['POST'])
- @login_required
- @validate_request("llm_factory", "api_key")
- def set_api_key():
- req = request.json
- # test if api key works
- chat_passed, embd_passed, rerank_passed = False, False, False
- factory = req["llm_factory"]
- msg = ""
- for llm in LLMService.query(fid=factory)[:3]:
- if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
- mdl = EmbeddingModel[factory](
- req["api_key"], llm.llm_name, base_url=req.get("base_url"))
- try:
- arr, tc = mdl.encode(["Test if the api key is available"])
- if len(arr[0]) == 0:
- raise Exception("Fail")
- embd_passed = True
- except Exception as e:
- msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
- elif not chat_passed and llm.model_type == LLMType.CHAT.value:
- mdl = ChatModel[factory](
- req["api_key"], llm.llm_name, base_url=req.get("base_url"))
- try:
- m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}],
- {"temperature": 0.9,'max_tokens':50})
- if m.find("**ERROR**") >=0:
- raise Exception(m)
- except Exception as e:
- msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
- e)
- chat_passed = True
- elif not rerank_passed and llm.model_type == LLMType.RERANK:
- mdl = RerankModel[factory](
- req["api_key"], llm.llm_name, base_url=req.get("base_url"))
- try:
- arr, tc = mdl.similarity("What's the weather?", ["Is it sunny today?"])
- if len(arr) == 0 or tc == 0:
- raise Exception("Fail")
- except Exception as e:
- msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
- e)
- rerank_passed = True
-
- if msg:
- return get_data_error_result(retmsg=msg)
-
- llm_config = {
- "api_key": req["api_key"],
- "api_base": req.get("base_url", "")
- }
- for n in ["model_type", "llm_name"]:
- if n in req:
- llm_config[n] = req[n]
-
- for llm in LLMService.query(fid=factory):
- if not TenantLLMService.filter_update(
- [TenantLLM.tenant_id == current_user.id,
- TenantLLM.llm_factory == factory,
- TenantLLM.llm_name == llm.llm_name],
- llm_config):
- TenantLLMService.save(
- tenant_id=current_user.id,
- llm_factory=factory,
- llm_name=llm.llm_name,
- model_type=llm.model_type,
- api_key=llm_config["api_key"],
- api_base=llm_config["api_base"]
- )
-
- return get_json_result(data=True)
-
-
- @manager.route('/add_llm', methods=['POST'])
- @login_required
- @validate_request("llm_factory")
- def add_llm():
- req = request.json
- factory = req["llm_factory"]
-
- def apikey_json(keys):
- nonlocal req
- return json.dumps({k: req.get(k, "") for k in keys})
-
- if factory == "VolcEngine":
- # For VolcEngine, due to its special authentication method
- # Assemble ark_api_key endpoint_id into api_key
- llm_name = req["llm_name"]
- api_key = apikey_json(["ark_api_key", "endpoint_id"])
-
- elif factory == "Tencent Hunyuan":
- req["api_key"] = apikey_json(["hunyuan_sid", "hunyuan_sk"])
- return set_api_key()
-
- elif factory == "Tencent Cloud":
- req["api_key"] = apikey_json(["tencent_cloud_sid", "tencent_cloud_sk"])
-
- elif factory == "Bedrock":
- # For Bedrock, due to its special authentication method
- # Assemble bedrock_ak, bedrock_sk, bedrock_region
- llm_name = req["llm_name"]
- api_key = apikey_json(["bedrock_ak", "bedrock_sk", "bedrock_region"])
-
- elif factory == "LocalAI":
- llm_name = req["llm_name"]+"___LocalAI"
- api_key = "xxxxxxxxxxxxxxx"
-
- elif factory == "OpenAI-API-Compatible":
- llm_name = req["llm_name"]+"___OpenAI-API"
- api_key = req.get("api_key","xxxxxxxxxxxxxxx")
-
- elif factory =="XunFei Spark":
- llm_name = req["llm_name"]
- api_key = req.get("spark_api_password","xxxxxxxxxxxxxxx")
-
- elif factory == "BaiduYiyan":
- llm_name = req["llm_name"]
- api_key = apikey_json(["yiyan_ak", "yiyan_sk"])
-
- elif factory == "Fish Audio":
- llm_name = req["llm_name"]
- api_key = apikey_json(["fish_audio_ak", "fish_audio_refid"])
-
- elif factory == "Google Cloud":
- llm_name = req["llm_name"]
- api_key = apikey_json(["google_project_id", "google_region", "google_service_account_key"])
-
- else:
- llm_name = req["llm_name"]
- api_key = req.get("api_key", "xxxxxxxxxxxxxxx")
-
- llm = {
- "tenant_id": current_user.id,
- "llm_factory": factory,
- "model_type": req["model_type"],
- "llm_name": llm_name,
- "api_base": req.get("api_base", ""),
- "api_key": api_key
- }
-
- msg = ""
- if llm["model_type"] == LLMType.EMBEDDING.value:
- mdl = EmbeddingModel[factory](
- key=llm['api_key'],
- model_name=llm["llm_name"],
- base_url=llm["api_base"])
- try:
- arr, tc = mdl.encode(["Test if the api key is available"])
- if len(arr[0]) == 0 or tc == 0:
- raise Exception("Fail")
- except Exception as e:
- msg += f"\nFail to access embedding model({llm['llm_name']})." + str(e)
- elif llm["model_type"] == LLMType.CHAT.value:
- mdl = ChatModel[factory](
- key=llm['api_key'],
- model_name=llm["llm_name"],
- base_url=llm["api_base"]
- )
- try:
- m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
- "temperature": 0.9})
- if not tc:
- raise Exception(m)
- except Exception as e:
- msg += f"\nFail to access model({llm['llm_name']})." + str(
- e)
- elif llm["model_type"] == LLMType.RERANK:
- mdl = RerankModel[factory](
- key=llm["api_key"],
- model_name=llm["llm_name"],
- base_url=llm["api_base"]
- )
- try:
- arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!"])
- if len(arr) == 0 or tc == 0:
- raise Exception("Not known.")
- except Exception as e:
- msg += f"\nFail to access model({llm['llm_name']})." + str(
- e)
- elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
- mdl = CvModel[factory](
- key=llm["api_key"],
- model_name=llm["llm_name"],
- base_url=llm["api_base"]
- )
- try:
- img_url = (
- "https://upload.wikimedia.org/wikipedia/comm"
- "ons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/256"
- "0px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
- )
- res = requests.get(img_url)
- if res.status_code == 200:
- m, tc = mdl.describe(res.content)
- if not tc:
- raise Exception(m)
- else:
- pass
- except Exception as e:
- msg += f"\nFail to access model({llm['llm_name']})." + str(e)
- elif llm["model_type"] == LLMType.TTS:
- mdl = TTSModel[factory](
- key=llm["api_key"], model_name=llm["llm_name"], base_url=llm["api_base"]
- )
- try:
- for resp in mdl.tts("Hello~ Ragflower!"):
- pass
- except RuntimeError as e:
- msg += f"\nFail to access model({llm['llm_name']})." + str(e)
- else:
- # TODO: check other type of models
- pass
-
- if msg:
- return get_data_error_result(retmsg=msg)
-
- if not TenantLLMService.filter_update(
- [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory, TenantLLM.llm_name == llm["llm_name"]], llm):
- TenantLLMService.save(**llm)
-
- return get_json_result(data=True)
-
-
- @manager.route('/delete_llm', methods=['POST'])
- @login_required
- @validate_request("llm_factory", "llm_name")
- def delete_llm():
- req = request.json
- TenantLLMService.filter_delete(
- [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"], TenantLLM.llm_name == req["llm_name"]])
- return get_json_result(data=True)
-
-
- @manager.route('/my_llms', methods=['GET'])
- @login_required
- def my_llms():
- try:
- res = {}
- for o in TenantLLMService.get_my_llms(current_user.id):
- if o["llm_factory"] not in res:
- res[o["llm_factory"]] = {
- "tags": o["tags"],
- "llm": []
- }
- res[o["llm_factory"]]["llm"].append({
- "type": o["model_type"],
- "name": o["llm_name"],
- "used_token": o["used_tokens"]
- })
- return get_json_result(data=res)
- except Exception as e:
- return server_error_response(e)
-
-
- @manager.route('/list', methods=['GET'])
- @login_required
- def list_app():
- self_deploied = ["Youdao","FastEmbed", "BAAI", "Ollama", "Xinference", "LocalAI", "LM-Studio"]
- model_type = request.args.get("model_type")
- try:
- objs = TenantLLMService.query(tenant_id=current_user.id)
- facts = set([o.to_dict()["llm_factory"] for o in objs if o.api_key])
- llms = LLMService.get_all()
- llms = [m.to_dict()
- for m in llms if m.status == StatusEnum.VALID.value]
- for m in llms:
- m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in self_deploied
-
- llm_set = set([m["llm_name"] for m in llms])
- for o in objs:
- if not o.api_key:continue
- if o.llm_name in llm_set:continue
- llms.append({"llm_name": o.llm_name, "model_type": o.model_type, "fid": o.llm_factory, "available": True})
-
- res = {}
- for m in llms:
- if model_type and m["model_type"].find(model_type)<0:
- continue
- if m["fid"] not in res:
- res[m["fid"]] = []
- res[m["fid"]].append(m)
-
- return get_json_result(data=res)
- except Exception as e:
- return server_error_response(e)
|