|  | 10 个月前 | |
|---|---|---|
| .github | 10 个月前 | |
| agent | 10 个月前 | |
| api | 10 个月前 | |
| conf | 11 个月前 | |
| deepdoc | 10 个月前 | |
| docker | 10 个月前 | |
| docs | 10 个月前 | |
| example | 11 个月前 | |
| graphrag | 10 个月前 | |
| helm | 10 个月前 | |
| intergrations/chatgpt-on-wechat/plugins | 10 个月前 | |
| rag | 10 个月前 | |
| sdk/python | 10 个月前 | |
| web | 10 个月前 | |
| .gitattributes | 1年前 | |
| .gitignore | 10 个月前 | |
| CONTRIBUTING.md | 1年前 | |
| Dockerfile | 10 个月前 | |
| Dockerfile.deps | 10 个月前 | |
| Dockerfile.scratch.oc9 | 11 个月前 | |
| LICENSE | 1年前 | |
| README.md | 10 个月前 | |
| README_id.md | 10 个月前 | |
| README_ja.md | 10 个月前 | |
| README_ko.md | 10 个月前 | |
| README_zh.md | 10 个月前 | |
| SECURITY.md | 1年前 | |
| download_deps.py | 10 个月前 | |
| poetry.lock | 11 个月前 | |
| poetry.toml | 1年前 | |
| pyproject.toml | 11 个月前 | |
| show_env.sh | 11 个月前 | |
English | 简体中文 | 日本語 | 한국어 | Bahasa Indonesia
RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data.
Try our demo at https://demo.ragflow.io.
⭐️ Star our repository to stay up-to-date with exciting new features and improvements! Get instant notifications for new releases! 🌟
vm.max_map_count >= 262144:To check the value of
vm.max_map_count:> $ sysctl vm.max_map_count > ``` > > Reset `vm.max_map_count` to a value at least 262144 if it is not. > > ```bash > # In this case, we set it to 262144: > $ sudo sysctl -w vm.max_map_count=262144 > ``` > > This change will be reset after a system reboot. To ensure your change remains permanent, add or update the `vm.max_map_count` value in **/etc/sysctl.conf** accordingly: > > ```bash > vm.max_map_count=262144 > ``` 2. Clone the repo: ```bash $ git clone https://github.com/infiniflow/ragflow.git
The command below downloads the v0.14.1 version Docker image for RAGFlow slim (
v0.14.1-slim). Note that RAGFlow slim Docker images do not include embedding models or Python libraries and hence are approximately 2 GB in size.
   $ cd ragflow/docker
   $ docker compose -f docker-compose.yml up -d
| RAGFLOW_IMAGE tag in docker/.env | size | Including embedding models and related Python packages? | comments | | -------------------------------- | ----- | ------------------------------------------------------- | ---------------------- | | v0.14.1 | ~9 GB | YES | stable release | | v0.14.1-slim | ~2 GB | NO | stable release | | v0.15.0-dev1 | ~9 GB | YES | unstable beta release | | v0.15.0-dev1-slim | ~2 GB | NO | unstable beta release | | nightly | ~9 GB | YES | unstable nightly build | | nightly-slim | ~2 GB | NO | unstable nightly build |
   $ docker logs -f ragflow-server
The following output confirms a successful launch of the system:
         ____   ___    ______ ______ __               
        / __ \ /   |  / ____// ____// /____  _      __
       / /_/ // /| | / / __ / /_   / // __ \| | /| / /
      / _, _// ___ |/ /_/ // __/  / // /_/ /| |/ |/ / 
     /_/ |_|/_/  |_|\____//_/    /_/ \____/ |__/|__/ 
    * Running on all addresses (0.0.0.0)
    * Running on http://127.0.0.1:9380
    * Running on http://x.x.x.x:9380
    INFO:werkzeug:Press CTRL+C to quit
If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a
network anormalerror because, at that moment, your RAGFlow may not be fully initialized.
http://IP_OF_YOUR_MACHINE (sans port number) as the default
HTTP serving port 80 can be omitted when using the default configurations.user_default_llm and update
the API_KEY field with the corresponding API key.See llm_api_key_setup for more information.
The show is on!
When it comes to system configurations, you will need to manage the following files:
SVR_HTTP_PORT, MYSQL_PASSWORD, and
MINIO_PASSWORD.The ./docker/README file provides a detailed description of the environment settings and service configurations which can be used as
${ENV_VARS}in the service_conf.yaml.template file.
To update the default HTTP serving port (80), go to docker-compose.yml and change 80:80
to <YOUR_SERVING_PORT>:80.
Updates to the above configurations require a reboot of all containers to take effect:
> $ docker compose -f docker/docker-compose.yml up -d > ``` ### Switch doc engine from Elasticsearch to Infinity RAGFlow uses Elasticsearch by default for storing full text and vectors. To switch to [Infinity](https://github.com/infiniflow/infinity/), follow these steps: 1. Stop all running containers: ```bash $ docker compose -f docker/docker-compose.yml down -v
Set DOC_ENGINE in docker/.env to infinity.
Start the containers:
   $ docker compose -f docker/docker-compose.yml up -d
[!WARNING] Switching to Infinity on a Linux/arm64 machine is not yet officially supported.
This image is approximately 2 GB in size and relies on external LLM and embedding services.
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
This image is approximately 9 GB in size. As it includes embedding models, it relies on external LLM services only.
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build -f Dockerfile -t infiniflow/ragflow:nightly .
Install Poetry, or skip this step if it is already installed:
pipx install poetry
export POETRY_VIRTUALENVS_CREATE=true POETRY_VIRTUALENVS_IN_PROJECT=true
Clone the source code and install Python dependencies:
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
~/.local/bin/poetry install --sync --no-root --with=full # install RAGFlow dependent python modules
Launch the dependent services (MinIO, Elasticsearch, Redis, and MySQL) using Docker Compose:
docker compose -f docker/docker-compose-base.yml up -d
Add the following line to /etc/hosts to resolve all hosts specified in docker/.env to 127.0.0.1:
   127.0.0.1       es01 infinity mysql minio redis
HF_ENDPOINT environment variable to use a mirror site:   export HF_ENDPOINT=https://hf-mirror.com
Launch backend service:
source .venv/bin/activate
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
Install frontend dependencies:
cd web
npm install --force
Launch frontend service:
npm run dev 
The following output confirms a successful launch of the system:
See the RAGFlow Roadmap 2024
RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community. If you would like to be a part, review our Contribution Guidelines first.