| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import datetime
- import json
- import re
-
- import xxhash
- from flask import request
- from flask_login import current_user, login_required
-
- from api import settings
- from api.db import LLMType, ParserType
- from api.db.services.dialog_service import meta_filter
- from api.db.services.document_service import DocumentService
- from api.db.services.knowledgebase_service import KnowledgebaseService
- from api.db.services.llm_service import LLMBundle
- from api.db.services.search_service import SearchService
- from api.db.services.user_service import UserTenantService
- from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request
- from rag.app.qa import beAdoc, rmPrefix
- from rag.app.tag import label_question
- from rag.nlp import rag_tokenizer, search
- from rag.prompts import cross_languages, keyword_extraction
- from rag.prompts.prompts import gen_meta_filter
- from rag.settings import PAGERANK_FLD
- from rag.utils import rmSpace
-
-
- @manager.route('/list', methods=['POST']) # noqa: F821
- @login_required
- @validate_request("doc_id")
- def list_chunk():
- req = request.json
- doc_id = req["doc_id"]
- page = int(req.get("page", 1))
- size = int(req.get("size", 30))
- question = req.get("keywords", "")
- try:
- tenant_id = DocumentService.get_tenant_id(req["doc_id"])
- if not tenant_id:
- return get_data_error_result(message="Tenant not found!")
- e, doc = DocumentService.get_by_id(doc_id)
- if not e:
- return get_data_error_result(message="Document not found!")
- kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
- query = {
- "doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
- }
- if "available_int" in req:
- query["available_int"] = int(req["available_int"])
- sres = settings.retrievaler.search(query, search.index_name(tenant_id), kb_ids, highlight=True)
- res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
- for id in sres.ids:
- d = {
- "chunk_id": id,
- "content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[
- id].get(
- "content_with_weight", ""),
- "doc_id": sres.field[id]["doc_id"],
- "docnm_kwd": sres.field[id]["docnm_kwd"],
- "important_kwd": sres.field[id].get("important_kwd", []),
- "question_kwd": sres.field[id].get("question_kwd", []),
- "image_id": sres.field[id].get("img_id", ""),
- "available_int": int(sres.field[id].get("available_int", 1)),
- "positions": sres.field[id].get("position_int", []),
- }
- assert isinstance(d["positions"], list)
- assert len(d["positions"]) == 0 or (isinstance(d["positions"][0], list) and len(d["positions"][0]) == 5)
- res["chunks"].append(d)
- return get_json_result(data=res)
- except Exception as e:
- if str(e).find("not_found") > 0:
- return get_json_result(data=False, message='No chunk found!',
- code=settings.RetCode.DATA_ERROR)
- return server_error_response(e)
-
-
- @manager.route('/get', methods=['GET']) # noqa: F821
- @login_required
- def get():
- chunk_id = request.args["chunk_id"]
- try:
- tenants = UserTenantService.query(user_id=current_user.id)
- if not tenants:
- return get_data_error_result(message="Tenant not found!")
- for tenant in tenants:
- kb_ids = KnowledgebaseService.get_kb_ids(tenant.tenant_id)
- chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant.tenant_id), kb_ids)
- if chunk:
- break
- if chunk is None:
- return server_error_response(Exception("Chunk not found"))
-
- k = []
- for n in chunk.keys():
- if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
- k.append(n)
- for n in k:
- del chunk[n]
-
- return get_json_result(data=chunk)
- except Exception as e:
- if str(e).find("NotFoundError") >= 0:
- return get_json_result(data=False, message='Chunk not found!',
- code=settings.RetCode.DATA_ERROR)
- return server_error_response(e)
-
-
- @manager.route('/set', methods=['POST']) # noqa: F821
- @login_required
- @validate_request("doc_id", "chunk_id", "content_with_weight")
- def set():
- req = request.json
- d = {
- "id": req["chunk_id"],
- "content_with_weight": req["content_with_weight"]}
- d["content_ltks"] = rag_tokenizer.tokenize(req["content_with_weight"])
- d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
- if "important_kwd" in req:
- if not isinstance(req["important_kwd"], list):
- return get_data_error_result(message="`important_kwd` should be a list")
- d["important_kwd"] = req["important_kwd"]
- d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_kwd"]))
- if "question_kwd" in req:
- if not isinstance(req["question_kwd"], list):
- return get_data_error_result(message="`question_kwd` should be a list")
- d["question_kwd"] = req["question_kwd"]
- d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["question_kwd"]))
- if "tag_kwd" in req:
- d["tag_kwd"] = req["tag_kwd"]
- if "tag_feas" in req:
- d["tag_feas"] = req["tag_feas"]
- if "available_int" in req:
- d["available_int"] = req["available_int"]
-
- try:
- tenant_id = DocumentService.get_tenant_id(req["doc_id"])
- if not tenant_id:
- return get_data_error_result(message="Tenant not found!")
-
- embd_id = DocumentService.get_embd_id(req["doc_id"])
- embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_id)
-
- e, doc = DocumentService.get_by_id(req["doc_id"])
- if not e:
- return get_data_error_result(message="Document not found!")
-
- if doc.parser_id == ParserType.QA:
- arr = [
- t for t in re.split(
- r"[\n\t]",
- req["content_with_weight"]) if len(t) > 1]
- q, a = rmPrefix(arr[0]), rmPrefix("\n".join(arr[1:]))
- d = beAdoc(d, q, a, not any(
- [rag_tokenizer.is_chinese(t) for t in q + a]))
-
- v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d.get("question_kwd") else "\n".join(d["question_kwd"])])
- v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
- d["q_%d_vec" % len(v)] = v.tolist()
- settings.docStoreConn.update({"id": req["chunk_id"]}, d, search.index_name(tenant_id), doc.kb_id)
- return get_json_result(data=True)
- except Exception as e:
- return server_error_response(e)
-
-
- @manager.route('/switch', methods=['POST']) # noqa: F821
- @login_required
- @validate_request("chunk_ids", "available_int", "doc_id")
- def switch():
- req = request.json
- try:
- e, doc = DocumentService.get_by_id(req["doc_id"])
- if not e:
- return get_data_error_result(message="Document not found!")
- for cid in req["chunk_ids"]:
- if not settings.docStoreConn.update({"id": cid},
- {"available_int": int(req["available_int"])},
- search.index_name(DocumentService.get_tenant_id(req["doc_id"])),
- doc.kb_id):
- return get_data_error_result(message="Index updating failure")
- return get_json_result(data=True)
- except Exception as e:
- return server_error_response(e)
-
-
- @manager.route('/rm', methods=['POST']) # noqa: F821
- @login_required
- @validate_request("chunk_ids", "doc_id")
- def rm():
- from rag.utils.storage_factory import STORAGE_IMPL
- req = request.json
- try:
- e, doc = DocumentService.get_by_id(req["doc_id"])
- if not e:
- return get_data_error_result(message="Document not found!")
- if not settings.docStoreConn.delete({"id": req["chunk_ids"]},
- search.index_name(DocumentService.get_tenant_id(req["doc_id"])),
- doc.kb_id):
- return get_data_error_result(message="Chunk deleting failure")
- deleted_chunk_ids = req["chunk_ids"]
- chunk_number = len(deleted_chunk_ids)
- DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
- for cid in deleted_chunk_ids:
- if STORAGE_IMPL.obj_exist(doc.kb_id, cid):
- STORAGE_IMPL.rm(doc.kb_id, cid)
- return get_json_result(data=True)
- except Exception as e:
- return server_error_response(e)
-
-
- @manager.route('/create', methods=['POST']) # noqa: F821
- @login_required
- @validate_request("doc_id", "content_with_weight")
- def create():
- req = request.json
- chunck_id = xxhash.xxh64((req["content_with_weight"] + req["doc_id"]).encode("utf-8")).hexdigest()
- d = {"id": chunck_id, "content_ltks": rag_tokenizer.tokenize(req["content_with_weight"]),
- "content_with_weight": req["content_with_weight"]}
- d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
- d["important_kwd"] = req.get("important_kwd", [])
- if not isinstance(d["important_kwd"], list):
- return get_data_error_result(message="`important_kwd` is required to be a list")
- d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"]))
- d["question_kwd"] = req.get("question_kwd", [])
- if not isinstance(d["question_kwd"], list):
- return get_data_error_result(message="`question_kwd` is required to be a list")
- d["question_tks"] = rag_tokenizer.tokenize("\n".join(d["question_kwd"]))
- d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
- d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
- if "tag_feas" in req:
- d["tag_feas"] = req["tag_feas"]
- if "tag_feas" in req:
- d["tag_feas"] = req["tag_feas"]
-
- try:
- e, doc = DocumentService.get_by_id(req["doc_id"])
- if not e:
- return get_data_error_result(message="Document not found!")
- d["kb_id"] = [doc.kb_id]
- d["docnm_kwd"] = doc.name
- d["title_tks"] = rag_tokenizer.tokenize(doc.name)
- d["doc_id"] = doc.id
-
- tenant_id = DocumentService.get_tenant_id(req["doc_id"])
- if not tenant_id:
- return get_data_error_result(message="Tenant not found!")
-
- e, kb = KnowledgebaseService.get_by_id(doc.kb_id)
- if not e:
- return get_data_error_result(message="Knowledgebase not found!")
- if kb.pagerank:
- d[PAGERANK_FLD] = kb.pagerank
-
- embd_id = DocumentService.get_embd_id(req["doc_id"])
- embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING.value, embd_id)
-
- v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
- v = 0.1 * v[0] + 0.9 * v[1]
- d["q_%d_vec" % len(v)] = v.tolist()
- settings.docStoreConn.insert([d], search.index_name(tenant_id), doc.kb_id)
-
- DocumentService.increment_chunk_num(
- doc.id, doc.kb_id, c, 1, 0)
- return get_json_result(data={"chunk_id": chunck_id})
- except Exception as e:
- return server_error_response(e)
-
-
- @manager.route('/retrieval_test', methods=['POST']) # noqa: F821
- @login_required
- @validate_request("kb_id", "question")
- def retrieval_test():
- req = request.json
- page = int(req.get("page", 1))
- size = int(req.get("size", 30))
- question = req["question"]
- kb_ids = req["kb_id"]
- if isinstance(kb_ids, str):
- kb_ids = [kb_ids]
- doc_ids = req.get("doc_ids", [])
- use_kg = req.get("use_kg", False)
- top = int(req.get("top_k", 1024))
- langs = req.get("cross_languages", [])
- tenant_ids = []
-
- if req.get("search_id", ""):
- search_config = SearchService.get_detail(req.get("search_id", "")).get("search_config", {})
- meta_data_filter = search_config.get("meta_data_filter", {})
- metas = DocumentService.get_meta_by_kbs(kb_ids)
- if meta_data_filter.get("method") == "auto":
- chat_mdl = LLMBundle(current_user.id, LLMType.CHAT, llm_name=search_config.get("chat_id", ""))
- filters = gen_meta_filter(chat_mdl, metas, question)
- doc_ids.extend(meta_filter(metas, filters))
- if not doc_ids:
- doc_ids = None
- elif meta_data_filter.get("method") == "manual":
- doc_ids.extend(meta_filter(metas, meta_data_filter["manual"]))
- if not doc_ids:
- doc_ids = None
-
- try:
- tenants = UserTenantService.query(user_id=current_user.id)
- for kb_id in kb_ids:
- for tenant in tenants:
- if KnowledgebaseService.query(
- tenant_id=tenant.tenant_id, id=kb_id):
- tenant_ids.append(tenant.tenant_id)
- break
- else:
- return get_json_result(
- data=False, message='Only owner of knowledgebase authorized for this operation.',
- code=settings.RetCode.OPERATING_ERROR)
-
- e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
- if not e:
- return get_data_error_result(message="Knowledgebase not found!")
-
- if langs:
- question = cross_languages(kb.tenant_id, None, question, langs)
-
- embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
-
- rerank_mdl = None
- if req.get("rerank_id"):
- rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
-
- if req.get("keyword", False):
- chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
- question += keyword_extraction(chat_mdl, question)
-
- labels = label_question(question, [kb])
- ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
- float(req.get("similarity_threshold", 0.0)),
- float(req.get("vector_similarity_weight", 0.3)),
- top,
- doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"),
- rank_feature=labels
- )
- if use_kg:
- ck = settings.kg_retrievaler.retrieval(question,
- tenant_ids,
- kb_ids,
- embd_mdl,
- LLMBundle(kb.tenant_id, LLMType.CHAT))
- if ck["content_with_weight"]:
- ranks["chunks"].insert(0, ck)
-
- for c in ranks["chunks"]:
- c.pop("vector", None)
- ranks["labels"] = labels
-
- return get_json_result(data=ranks)
- except Exception as e:
- if str(e).find("not_found") > 0:
- return get_json_result(data=False, message='No chunk found! Check the chunk status please!',
- code=settings.RetCode.DATA_ERROR)
- return server_error_response(e)
-
-
- @manager.route('/knowledge_graph', methods=['GET']) # noqa: F821
- @login_required
- def knowledge_graph():
- doc_id = request.args["doc_id"]
- tenant_id = DocumentService.get_tenant_id(doc_id)
- kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
- req = {
- "doc_ids": [doc_id],
- "knowledge_graph_kwd": ["graph", "mind_map"]
- }
- sres = settings.retrievaler.search(req, search.index_name(tenant_id), kb_ids)
- obj = {"graph": {}, "mind_map": {}}
- for id in sres.ids[:2]:
- ty = sres.field[id]["knowledge_graph_kwd"]
- try:
- content_json = json.loads(sres.field[id]["content_with_weight"])
- except Exception:
- continue
-
- if ty == 'mind_map':
- node_dict = {}
-
- def repeat_deal(content_json, node_dict):
- if 'id' in content_json:
- if content_json['id'] in node_dict:
- node_name = content_json['id']
- content_json['id'] += f"({node_dict[content_json['id']]})"
- node_dict[node_name] += 1
- else:
- node_dict[content_json['id']] = 1
- if 'children' in content_json and content_json['children']:
- for item in content_json['children']:
- repeat_deal(item, node_dict)
-
- repeat_deal(content_json, node_dict)
-
- obj[ty] = content_json
-
- return get_json_result(data=obj)
|