You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

embedding_model.py 32KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import json
  17. import logging
  18. import os
  19. import re
  20. import threading
  21. from abc import ABC
  22. from urllib.parse import urljoin
  23. import dashscope
  24. import google.generativeai as genai
  25. import numpy as np
  26. import requests
  27. from huggingface_hub import snapshot_download
  28. from ollama import Client
  29. from openai import OpenAI
  30. from zhipuai import ZhipuAI
  31. from api import settings
  32. from api.utils.file_utils import get_home_cache_dir
  33. from api.utils.log_utils import log_exception
  34. from rag.utils import num_tokens_from_string, truncate
  35. class Base(ABC):
  36. def __init__(self, key, model_name):
  37. pass
  38. def encode(self, texts: list):
  39. raise NotImplementedError("Please implement encode method!")
  40. def encode_queries(self, text: str):
  41. raise NotImplementedError("Please implement encode method!")
  42. def total_token_count(self, resp):
  43. try:
  44. return resp.usage.total_tokens
  45. except Exception:
  46. pass
  47. try:
  48. return resp["usage"]["total_tokens"]
  49. except Exception:
  50. pass
  51. return 0
  52. class DefaultEmbedding(Base):
  53. _FACTORY_NAME = "BAAI"
  54. os.environ["CUDA_VISIBLE_DEVICES"] = "0"
  55. _model = None
  56. _model_name = ""
  57. _model_lock = threading.Lock()
  58. def __init__(self, key, model_name, **kwargs):
  59. """
  60. If you have trouble downloading HuggingFace models, -_^ this might help!!
  61. For Linux:
  62. export HF_ENDPOINT=https://hf-mirror.com
  63. For Windows:
  64. Good luck
  65. ^_-
  66. """
  67. if not settings.LIGHTEN:
  68. with DefaultEmbedding._model_lock:
  69. import torch
  70. from FlagEmbedding import FlagModel
  71. if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
  72. try:
  73. DefaultEmbedding._model = FlagModel(
  74. os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
  75. query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
  76. use_fp16=torch.cuda.is_available(),
  77. )
  78. DefaultEmbedding._model_name = model_name
  79. except Exception:
  80. model_dir = snapshot_download(
  81. repo_id="BAAI/bge-large-zh-v1.5", local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), local_dir_use_symlinks=False
  82. )
  83. DefaultEmbedding._model = FlagModel(model_dir, query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", use_fp16=torch.cuda.is_available())
  84. self._model = DefaultEmbedding._model
  85. self._model_name = DefaultEmbedding._model_name
  86. def encode(self, texts: list):
  87. batch_size = 16
  88. texts = [truncate(t, 2048) for t in texts]
  89. token_count = 0
  90. for t in texts:
  91. token_count += num_tokens_from_string(t)
  92. ress = []
  93. for i in range(0, len(texts), batch_size):
  94. ress.extend(self._model.encode(texts[i : i + batch_size]).tolist())
  95. return np.array(ress), token_count
  96. def encode_queries(self, text: str):
  97. token_count = num_tokens_from_string(text)
  98. return self._model.encode_queries([text]).tolist()[0], token_count
  99. class OpenAIEmbed(Base):
  100. _FACTORY_NAME = "OpenAI"
  101. def __init__(self, key, model_name="text-embedding-ada-002", base_url="https://api.openai.com/v1"):
  102. if not base_url:
  103. base_url = "https://api.openai.com/v1"
  104. self.client = OpenAI(api_key=key, base_url=base_url)
  105. self.model_name = model_name
  106. def encode(self, texts: list):
  107. # OpenAI requires batch size <=16
  108. batch_size = 16
  109. texts = [truncate(t, 8191) for t in texts]
  110. ress = []
  111. total_tokens = 0
  112. for i in range(0, len(texts), batch_size):
  113. res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
  114. try:
  115. ress.extend([d.embedding for d in res.data])
  116. total_tokens += self.total_token_count(res)
  117. except Exception as _e:
  118. log_exception(_e, res)
  119. return np.array(ress), total_tokens
  120. def encode_queries(self, text):
  121. res = self.client.embeddings.create(input=[truncate(text, 8191)], model=self.model_name)
  122. return np.array(res.data[0].embedding), self.total_token_count(res)
  123. class LocalAIEmbed(Base):
  124. _FACTORY_NAME = "LocalAI"
  125. def __init__(self, key, model_name, base_url):
  126. if not base_url:
  127. raise ValueError("Local embedding model url cannot be None")
  128. base_url = urljoin(base_url, "v1")
  129. self.client = OpenAI(api_key="empty", base_url=base_url)
  130. self.model_name = model_name.split("___")[0]
  131. def encode(self, texts: list):
  132. batch_size = 16
  133. ress = []
  134. for i in range(0, len(texts), batch_size):
  135. res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
  136. try:
  137. ress.extend([d.embedding for d in res.data])
  138. except Exception as _e:
  139. log_exception(_e, res)
  140. # local embedding for LmStudio donot count tokens
  141. return np.array(ress), 1024
  142. def encode_queries(self, text):
  143. embds, cnt = self.encode([text])
  144. return np.array(embds[0]), cnt
  145. class AzureEmbed(OpenAIEmbed):
  146. _FACTORY_NAME = "Azure-OpenAI"
  147. def __init__(self, key, model_name, **kwargs):
  148. from openai.lib.azure import AzureOpenAI
  149. api_key = json.loads(key).get("api_key", "")
  150. api_version = json.loads(key).get("api_version", "2024-02-01")
  151. self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
  152. self.model_name = model_name
  153. class BaiChuanEmbed(OpenAIEmbed):
  154. _FACTORY_NAME = "BaiChuan"
  155. def __init__(self, key, model_name="Baichuan-Text-Embedding", base_url="https://api.baichuan-ai.com/v1"):
  156. if not base_url:
  157. base_url = "https://api.baichuan-ai.com/v1"
  158. super().__init__(key, model_name, base_url)
  159. class QWenEmbed(Base):
  160. _FACTORY_NAME = "Tongyi-Qianwen"
  161. def __init__(self, key, model_name="text_embedding_v2", **kwargs):
  162. self.key = key
  163. self.model_name = model_name
  164. def encode(self, texts: list):
  165. import dashscope
  166. import time
  167. batch_size = 4
  168. res = []
  169. token_count = 0
  170. texts = [truncate(t, 2048) for t in texts]
  171. for i in range(0, len(texts), batch_size):
  172. retry_max = 5
  173. resp = dashscope.TextEmbedding.call(model=self.model_name, input=texts[i : i + batch_size], api_key=self.key, text_type="document")
  174. while resp["output"] is None and retry_max > 0:
  175. time.sleep(10)
  176. resp = dashscope.TextEmbedding.call(model=self.model_name, input=texts[i : i + batch_size], api_key=self.key, text_type="document")
  177. retry_max -= 1
  178. if retry_max == 0 and resp["output"] is None:
  179. log_exception(ValueError("Retry_max reached, calling embedding model failed"))
  180. raise
  181. try:
  182. embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
  183. for e in resp["output"]["embeddings"]:
  184. embds[e["text_index"]] = e["embedding"]
  185. res.extend(embds)
  186. token_count += self.total_token_count(resp)
  187. except Exception as _e:
  188. log_exception(_e, resp)
  189. raise
  190. return np.array(res), token_count
  191. def encode_queries(self, text):
  192. resp = dashscope.TextEmbedding.call(model=self.model_name, input=text[:2048], api_key=self.key, text_type="query")
  193. try:
  194. return np.array(resp["output"]["embeddings"][0]["embedding"]), self.total_token_count(resp)
  195. except Exception as _e:
  196. log_exception(_e, resp)
  197. class ZhipuEmbed(Base):
  198. _FACTORY_NAME = "ZHIPU-AI"
  199. def __init__(self, key, model_name="embedding-2", **kwargs):
  200. self.client = ZhipuAI(api_key=key)
  201. self.model_name = model_name
  202. def encode(self, texts: list):
  203. arr = []
  204. tks_num = 0
  205. MAX_LEN = -1
  206. if self.model_name.lower() == "embedding-2":
  207. MAX_LEN = 512
  208. if self.model_name.lower() == "embedding-3":
  209. MAX_LEN = 3072
  210. if MAX_LEN > 0:
  211. texts = [truncate(t, MAX_LEN) for t in texts]
  212. for txt in texts:
  213. res = self.client.embeddings.create(input=txt, model=self.model_name)
  214. try:
  215. arr.append(res.data[0].embedding)
  216. tks_num += self.total_token_count(res)
  217. except Exception as _e:
  218. log_exception(_e, res)
  219. return np.array(arr), tks_num
  220. def encode_queries(self, text):
  221. res = self.client.embeddings.create(input=text, model=self.model_name)
  222. try:
  223. return np.array(res.data[0].embedding), self.total_token_count(res)
  224. except Exception as _e:
  225. log_exception(_e, res)
  226. class OllamaEmbed(Base):
  227. _FACTORY_NAME = "Ollama"
  228. _special_tokens = ["<|endoftext|>"]
  229. def __init__(self, key, model_name, **kwargs):
  230. self.client = Client(host=kwargs["base_url"]) if not key or key == "x" else Client(host=kwargs["base_url"], headers={"Authorization": f"Bear {key}"})
  231. self.model_name = model_name
  232. def encode(self, texts: list):
  233. arr = []
  234. tks_num = 0
  235. for txt in texts:
  236. # remove special tokens if they exist
  237. for token in OllamaEmbed._special_tokens:
  238. txt = txt.replace(token, "")
  239. res = self.client.embeddings(prompt=txt, model=self.model_name, options={"use_mmap": True})
  240. try:
  241. arr.append(res["embedding"])
  242. except Exception as _e:
  243. log_exception(_e, res)
  244. tks_num += 128
  245. return np.array(arr), tks_num
  246. def encode_queries(self, text):
  247. # remove special tokens if they exist
  248. for token in OllamaEmbed._special_tokens:
  249. text = text.replace(token, "")
  250. res = self.client.embeddings(prompt=text, model=self.model_name, options={"use_mmap": True})
  251. try:
  252. return np.array(res["embedding"]), 128
  253. except Exception as _e:
  254. log_exception(_e, res)
  255. class FastEmbed(DefaultEmbedding):
  256. _FACTORY_NAME = "FastEmbed"
  257. def __init__(
  258. self,
  259. key: str | None = None,
  260. model_name: str = "BAAI/bge-small-en-v1.5",
  261. cache_dir: str | None = None,
  262. threads: int | None = None,
  263. **kwargs,
  264. ):
  265. if not settings.LIGHTEN:
  266. with FastEmbed._model_lock:
  267. from fastembed import TextEmbedding
  268. if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
  269. try:
  270. DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
  271. DefaultEmbedding._model_name = model_name
  272. except Exception:
  273. cache_dir = snapshot_download(
  274. repo_id="BAAI/bge-small-en-v1.5", local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), local_dir_use_symlinks=False
  275. )
  276. DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
  277. self._model = DefaultEmbedding._model
  278. self._model_name = model_name
  279. def encode(self, texts: list):
  280. # Using the internal tokenizer to encode the texts and get the total
  281. # number of tokens
  282. encodings = self._model.model.tokenizer.encode_batch(texts)
  283. total_tokens = sum(len(e) for e in encodings)
  284. embeddings = [e.tolist() for e in self._model.embed(texts, batch_size=16)]
  285. return np.array(embeddings), total_tokens
  286. def encode_queries(self, text: str):
  287. # Using the internal tokenizer to encode the texts and get the total
  288. # number of tokens
  289. encoding = self._model.model.tokenizer.encode(text)
  290. embedding = next(self._model.query_embed(text)).tolist()
  291. return np.array(embedding), len(encoding.ids)
  292. class XinferenceEmbed(Base):
  293. _FACTORY_NAME = "Xinference"
  294. def __init__(self, key, model_name="", base_url=""):
  295. base_url = urljoin(base_url, "v1")
  296. self.client = OpenAI(api_key=key, base_url=base_url)
  297. self.model_name = model_name
  298. def encode(self, texts: list):
  299. batch_size = 16
  300. ress = []
  301. total_tokens = 0
  302. for i in range(0, len(texts), batch_size):
  303. res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
  304. try:
  305. ress.extend([d.embedding for d in res.data])
  306. total_tokens += self.total_token_count(res)
  307. except Exception as _e:
  308. log_exception(_e, res)
  309. return np.array(ress), total_tokens
  310. def encode_queries(self, text):
  311. res = self.client.embeddings.create(input=[text], model=self.model_name)
  312. try:
  313. return np.array(res.data[0].embedding), self.total_token_count(res)
  314. except Exception as _e:
  315. log_exception(_e, res)
  316. class YoudaoEmbed(Base):
  317. _FACTORY_NAME = "Youdao"
  318. _client = None
  319. def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
  320. if not settings.LIGHTEN and not YoudaoEmbed._client:
  321. from BCEmbedding import EmbeddingModel as qanthing
  322. try:
  323. logging.info("LOADING BCE...")
  324. YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(get_home_cache_dir(), "bce-embedding-base_v1"))
  325. except Exception:
  326. YoudaoEmbed._client = qanthing(model_name_or_path=model_name.replace("maidalun1020", "InfiniFlow"))
  327. def encode(self, texts: list):
  328. batch_size = 10
  329. res = []
  330. token_count = 0
  331. for t in texts:
  332. token_count += num_tokens_from_string(t)
  333. for i in range(0, len(texts), batch_size):
  334. embds = YoudaoEmbed._client.encode(texts[i : i + batch_size])
  335. res.extend(embds)
  336. return np.array(res), token_count
  337. def encode_queries(self, text):
  338. embds = YoudaoEmbed._client.encode([text])
  339. return np.array(embds[0]), num_tokens_from_string(text)
  340. class JinaEmbed(Base):
  341. _FACTORY_NAME = "Jina"
  342. def __init__(self, key, model_name="jina-embeddings-v3", base_url="https://api.jina.ai/v1/embeddings"):
  343. self.base_url = "https://api.jina.ai/v1/embeddings"
  344. self.headers = {"Content-Type": "application/json", "Authorization": f"Bearer {key}"}
  345. self.model_name = model_name
  346. def encode(self, texts: list):
  347. texts = [truncate(t, 8196) for t in texts]
  348. batch_size = 16
  349. ress = []
  350. token_count = 0
  351. for i in range(0, len(texts), batch_size):
  352. data = {"model": self.model_name, "input": texts[i : i + batch_size], "encoding_type": "float"}
  353. response = requests.post(self.base_url, headers=self.headers, json=data)
  354. try:
  355. res = response.json()
  356. ress.extend([d["embedding"] for d in res["data"]])
  357. token_count += self.total_token_count(res)
  358. except Exception as _e:
  359. log_exception(_e, response)
  360. return np.array(ress), token_count
  361. def encode_queries(self, text):
  362. embds, cnt = self.encode([text])
  363. return np.array(embds[0]), cnt
  364. class MistralEmbed(Base):
  365. _FACTORY_NAME = "Mistral"
  366. def __init__(self, key, model_name="mistral-embed", base_url=None):
  367. from mistralai.client import MistralClient
  368. self.client = MistralClient(api_key=key)
  369. self.model_name = model_name
  370. def encode(self, texts: list):
  371. texts = [truncate(t, 8196) for t in texts]
  372. batch_size = 16
  373. ress = []
  374. token_count = 0
  375. for i in range(0, len(texts), batch_size):
  376. res = self.client.embeddings(input=texts[i : i + batch_size], model=self.model_name)
  377. try:
  378. ress.extend([d.embedding for d in res.data])
  379. token_count += self.total_token_count(res)
  380. except Exception as _e:
  381. log_exception(_e, res)
  382. return np.array(ress), token_count
  383. def encode_queries(self, text):
  384. res = self.client.embeddings(input=[truncate(text, 8196)], model=self.model_name)
  385. try:
  386. return np.array(res.data[0].embedding), self.total_token_count(res)
  387. except Exception as _e:
  388. log_exception(_e, res)
  389. class BedrockEmbed(Base):
  390. _FACTORY_NAME = "Bedrock"
  391. def __init__(self, key, model_name, **kwargs):
  392. import boto3
  393. self.bedrock_ak = json.loads(key).get("bedrock_ak", "")
  394. self.bedrock_sk = json.loads(key).get("bedrock_sk", "")
  395. self.bedrock_region = json.loads(key).get("bedrock_region", "")
  396. self.model_name = model_name
  397. if self.bedrock_ak == "" or self.bedrock_sk == "" or self.bedrock_region == "":
  398. # Try to create a client using the default credentials (AWS_PROFILE, AWS_DEFAULT_REGION, etc.)
  399. self.client = boto3.client("bedrock-runtime")
  400. else:
  401. self.client = boto3.client(service_name="bedrock-runtime", region_name=self.bedrock_region, aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
  402. def encode(self, texts: list):
  403. texts = [truncate(t, 8196) for t in texts]
  404. embeddings = []
  405. token_count = 0
  406. for text in texts:
  407. if self.model_name.split(".")[0] == "amazon":
  408. body = {"inputText": text}
  409. elif self.model_name.split(".")[0] == "cohere":
  410. body = {"texts": [text], "input_type": "search_document"}
  411. response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
  412. try:
  413. model_response = json.loads(response["body"].read())
  414. embeddings.extend([model_response["embedding"]])
  415. token_count += num_tokens_from_string(text)
  416. except Exception as _e:
  417. log_exception(_e, response)
  418. return np.array(embeddings), token_count
  419. def encode_queries(self, text):
  420. embeddings = []
  421. token_count = num_tokens_from_string(text)
  422. if self.model_name.split(".")[0] == "amazon":
  423. body = {"inputText": truncate(text, 8196)}
  424. elif self.model_name.split(".")[0] == "cohere":
  425. body = {"texts": [truncate(text, 8196)], "input_type": "search_query"}
  426. response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
  427. try:
  428. model_response = json.loads(response["body"].read())
  429. embeddings.extend(model_response["embedding"])
  430. except Exception as _e:
  431. log_exception(_e, response)
  432. return np.array(embeddings), token_count
  433. class GeminiEmbed(Base):
  434. _FACTORY_NAME = "Gemini"
  435. def __init__(self, key, model_name="models/text-embedding-004", **kwargs):
  436. self.key = key
  437. self.model_name = "models/" + model_name
  438. def encode(self, texts: list):
  439. texts = [truncate(t, 2048) for t in texts]
  440. token_count = sum(num_tokens_from_string(text) for text in texts)
  441. genai.configure(api_key=self.key)
  442. batch_size = 16
  443. ress = []
  444. for i in range(0, len(texts), batch_size):
  445. result = genai.embed_content(model=self.model_name, content=texts[i : i + batch_size], task_type="retrieval_document", title="Embedding of single string")
  446. try:
  447. ress.extend(result["embedding"])
  448. except Exception as _e:
  449. log_exception(_e, result)
  450. return np.array(ress), token_count
  451. def encode_queries(self, text):
  452. genai.configure(api_key=self.key)
  453. result = genai.embed_content(model=self.model_name, content=truncate(text, 2048), task_type="retrieval_document", title="Embedding of single string")
  454. token_count = num_tokens_from_string(text)
  455. try:
  456. return np.array(result["embedding"]), token_count
  457. except Exception as _e:
  458. log_exception(_e, result)
  459. class NvidiaEmbed(Base):
  460. _FACTORY_NAME = "NVIDIA"
  461. def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings"):
  462. if not base_url:
  463. base_url = "https://integrate.api.nvidia.com/v1/embeddings"
  464. self.api_key = key
  465. self.base_url = base_url
  466. self.headers = {
  467. "accept": "application/json",
  468. "Content-Type": "application/json",
  469. "authorization": f"Bearer {self.api_key}",
  470. }
  471. self.model_name = model_name
  472. if model_name == "nvidia/embed-qa-4":
  473. self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings"
  474. self.model_name = "NV-Embed-QA"
  475. if model_name == "snowflake/arctic-embed-l":
  476. self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings"
  477. def encode(self, texts: list):
  478. batch_size = 16
  479. ress = []
  480. token_count = 0
  481. for i in range(0, len(texts), batch_size):
  482. payload = {
  483. "input": texts[i : i + batch_size],
  484. "input_type": "query",
  485. "model": self.model_name,
  486. "encoding_format": "float",
  487. "truncate": "END",
  488. }
  489. response = requests.post(self.base_url, headers=self.headers, json=payload)
  490. try:
  491. res = response.json()
  492. except Exception as _e:
  493. log_exception(_e, response)
  494. ress.extend([d["embedding"] for d in res["data"]])
  495. token_count += self.total_token_count(res)
  496. return np.array(ress), token_count
  497. def encode_queries(self, text):
  498. embds, cnt = self.encode([text])
  499. return np.array(embds[0]), cnt
  500. class LmStudioEmbed(LocalAIEmbed):
  501. _FACTORY_NAME = "LM-Studio"
  502. def __init__(self, key, model_name, base_url):
  503. if not base_url:
  504. raise ValueError("Local llm url cannot be None")
  505. base_url = urljoin(base_url, "v1")
  506. self.client = OpenAI(api_key="lm-studio", base_url=base_url)
  507. self.model_name = model_name
  508. class OpenAI_APIEmbed(OpenAIEmbed):
  509. _FACTORY_NAME = ["VLLM", "OpenAI-API-Compatible"]
  510. def __init__(self, key, model_name, base_url):
  511. if not base_url:
  512. raise ValueError("url cannot be None")
  513. base_url = urljoin(base_url, "v1")
  514. self.client = OpenAI(api_key=key, base_url=base_url)
  515. self.model_name = model_name.split("___")[0]
  516. class CoHereEmbed(Base):
  517. _FACTORY_NAME = "Cohere"
  518. def __init__(self, key, model_name, base_url=None):
  519. from cohere import Client
  520. self.client = Client(api_key=key)
  521. self.model_name = model_name
  522. def encode(self, texts: list):
  523. batch_size = 16
  524. ress = []
  525. token_count = 0
  526. for i in range(0, len(texts), batch_size):
  527. res = self.client.embed(
  528. texts=texts[i : i + batch_size],
  529. model=self.model_name,
  530. input_type="search_document",
  531. embedding_types=["float"],
  532. )
  533. try:
  534. ress.extend([d for d in res.embeddings.float])
  535. token_count += res.meta.billed_units.input_tokens
  536. except Exception as _e:
  537. log_exception(_e, res)
  538. return np.array(ress), token_count
  539. def encode_queries(self, text):
  540. res = self.client.embed(
  541. texts=[text],
  542. model=self.model_name,
  543. input_type="search_query",
  544. embedding_types=["float"],
  545. )
  546. try:
  547. return np.array(res.embeddings.float[0]), int(res.meta.billed_units.input_tokens)
  548. except Exception as _e:
  549. log_exception(_e, res)
  550. class TogetherAIEmbed(OpenAIEmbed):
  551. _FACTORY_NAME = "TogetherAI"
  552. def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
  553. if not base_url:
  554. base_url = "https://api.together.xyz/v1"
  555. super().__init__(key, model_name, base_url=base_url)
  556. class PerfXCloudEmbed(OpenAIEmbed):
  557. _FACTORY_NAME = "PerfXCloud"
  558. def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
  559. if not base_url:
  560. base_url = "https://cloud.perfxlab.cn/v1"
  561. super().__init__(key, model_name, base_url)
  562. class UpstageEmbed(OpenAIEmbed):
  563. _FACTORY_NAME = "Upstage"
  564. def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
  565. if not base_url:
  566. base_url = "https://api.upstage.ai/v1/solar"
  567. super().__init__(key, model_name, base_url)
  568. class SILICONFLOWEmbed(Base):
  569. _FACTORY_NAME = "SILICONFLOW"
  570. def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1/embeddings"):
  571. if not base_url:
  572. base_url = "https://api.siliconflow.cn/v1/embeddings"
  573. self.headers = {
  574. "accept": "application/json",
  575. "content-type": "application/json",
  576. "authorization": f"Bearer {key}",
  577. }
  578. self.base_url = base_url
  579. self.model_name = model_name
  580. def encode(self, texts: list):
  581. batch_size = 16
  582. ress = []
  583. token_count = 0
  584. for i in range(0, len(texts), batch_size):
  585. texts_batch = texts[i : i + batch_size]
  586. payload = {
  587. "model": self.model_name,
  588. "input": texts_batch,
  589. "encoding_format": "float",
  590. }
  591. response = requests.post(self.base_url, json=payload, headers=self.headers)
  592. try:
  593. res = response.json()
  594. ress.extend([d["embedding"] for d in res["data"]])
  595. token_count += self.total_token_count(res)
  596. except Exception as _e:
  597. log_exception(_e, response)
  598. return np.array(ress), token_count
  599. def encode_queries(self, text):
  600. payload = {
  601. "model": self.model_name,
  602. "input": text,
  603. "encoding_format": "float",
  604. }
  605. response = requests.post(self.base_url, json=payload, headers=self.headers)
  606. try:
  607. res = response.json()
  608. return np.array(res["data"][0]["embedding"]), self.total_token_count(res)
  609. except Exception as _e:
  610. log_exception(_e, response)
  611. class ReplicateEmbed(Base):
  612. _FACTORY_NAME = "Replicate"
  613. def __init__(self, key, model_name, base_url=None):
  614. from replicate.client import Client
  615. self.model_name = model_name
  616. self.client = Client(api_token=key)
  617. def encode(self, texts: list):
  618. batch_size = 16
  619. token_count = sum([num_tokens_from_string(text) for text in texts])
  620. ress = []
  621. for i in range(0, len(texts), batch_size):
  622. res = self.client.run(self.model_name, input={"texts": texts[i : i + batch_size]})
  623. ress.extend(res)
  624. return np.array(ress), token_count
  625. def encode_queries(self, text):
  626. res = self.client.embed(self.model_name, input={"texts": [text]})
  627. return np.array(res), num_tokens_from_string(text)
  628. class BaiduYiyanEmbed(Base):
  629. _FACTORY_NAME = "BaiduYiyan"
  630. def __init__(self, key, model_name, base_url=None):
  631. import qianfan
  632. key = json.loads(key)
  633. ak = key.get("yiyan_ak", "")
  634. sk = key.get("yiyan_sk", "")
  635. self.client = qianfan.Embedding(ak=ak, sk=sk)
  636. self.model_name = model_name
  637. def encode(self, texts: list, batch_size=16):
  638. res = self.client.do(model=self.model_name, texts=texts).body
  639. try:
  640. return (
  641. np.array([r["embedding"] for r in res["data"]]),
  642. self.total_token_count(res),
  643. )
  644. except Exception as _e:
  645. log_exception(_e, res)
  646. def encode_queries(self, text):
  647. res = self.client.do(model=self.model_name, texts=[text]).body
  648. try:
  649. return (
  650. np.array([r["embedding"] for r in res["data"]]),
  651. self.total_token_count(res),
  652. )
  653. except Exception as _e:
  654. log_exception(_e, res)
  655. class VoyageEmbed(Base):
  656. _FACTORY_NAME = "Voyage AI"
  657. def __init__(self, key, model_name, base_url=None):
  658. import voyageai
  659. self.client = voyageai.Client(api_key=key)
  660. self.model_name = model_name
  661. def encode(self, texts: list):
  662. batch_size = 16
  663. ress = []
  664. token_count = 0
  665. for i in range(0, len(texts), batch_size):
  666. res = self.client.embed(texts=texts[i : i + batch_size], model=self.model_name, input_type="document")
  667. try:
  668. ress.extend(res.embeddings)
  669. token_count += res.total_tokens
  670. except Exception as _e:
  671. log_exception(_e, res)
  672. return np.array(ress), token_count
  673. def encode_queries(self, text):
  674. res = self.client.embed(texts=text, model=self.model_name, input_type="query")
  675. try:
  676. return np.array(res.embeddings)[0], res.total_tokens
  677. except Exception as _e:
  678. log_exception(_e, res)
  679. class HuggingFaceEmbed(Base):
  680. _FACTORY_NAME = "HuggingFace"
  681. def __init__(self, key, model_name, base_url=None):
  682. if not model_name:
  683. raise ValueError("Model name cannot be None")
  684. self.key = key
  685. self.model_name = model_name.split("___")[0]
  686. self.base_url = base_url or "http://127.0.0.1:8080"
  687. def encode(self, texts: list):
  688. embeddings = []
  689. for text in texts:
  690. response = requests.post(f"{self.base_url}/embed", json={"inputs": text}, headers={"Content-Type": "application/json"})
  691. if response.status_code == 200:
  692. embedding = response.json()
  693. embeddings.append(embedding[0])
  694. else:
  695. raise Exception(f"Error: {response.status_code} - {response.text}")
  696. return np.array(embeddings), sum([num_tokens_from_string(text) for text in texts])
  697. def encode_queries(self, text):
  698. response = requests.post(f"{self.base_url}/embed", json={"inputs": text}, headers={"Content-Type": "application/json"})
  699. if response.status_code == 200:
  700. embedding = response.json()
  701. return np.array(embedding[0]), num_tokens_from_string(text)
  702. else:
  703. raise Exception(f"Error: {response.status_code} - {response.text}")
  704. class VolcEngineEmbed(OpenAIEmbed):
  705. _FACTORY_NAME = "VolcEngine"
  706. def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3"):
  707. if not base_url:
  708. base_url = "https://ark.cn-beijing.volces.com/api/v3"
  709. ark_api_key = json.loads(key).get("ark_api_key", "")
  710. model_name = json.loads(key).get("ep_id", "") + json.loads(key).get("endpoint_id", "")
  711. super().__init__(ark_api_key, model_name, base_url)
  712. class GPUStackEmbed(OpenAIEmbed):
  713. _FACTORY_NAME = "GPUStack"
  714. def __init__(self, key, model_name, base_url):
  715. if not base_url:
  716. raise ValueError("url cannot be None")
  717. base_url = urljoin(base_url, "v1")
  718. self.client = OpenAI(api_key=key, base_url=base_url)
  719. self.model_name = model_name
  720. class NovitaEmbed(SILICONFLOWEmbed):
  721. _FACTORY_NAME = "NovitaAI"
  722. def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai/embeddings"):
  723. if not base_url:
  724. base_url = "https://api.novita.ai/v3/openai/embeddings"
  725. super().__init__(key, model_name, base_url)
  726. class GiteeEmbed(SILICONFLOWEmbed):
  727. _FACTORY_NAME = "GiteeAI"
  728. def __init__(self, key, model_name, base_url="https://ai.gitee.com/v1/embeddings"):
  729. if not base_url:
  730. base_url = "https://ai.gitee.com/v1/embeddings"
  731. super().__init__(key, model_name, base_url)