| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 | 
							- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import json
 - import logging
 - import re
 - from abc import ABC
 - 
 - import pandas as pd
 - 
 - from api.db import LLMType
 - from api.db.services.knowledgebase_service import KnowledgebaseService
 - from api.db.services.llm_service import LLMBundle
 - from api import settings
 - from agent.component.base import ComponentBase, ComponentParamBase
 - from rag.app.tag import label_question
 - from rag.prompts import kb_prompt
 - from rag.utils.tavily_conn import Tavily
 - 
 - 
 - class RetrievalParam(ComponentParamBase):
 -     """
 -     Define the Retrieval component parameters.
 -     """
 - 
 -     def __init__(self):
 -         super().__init__()
 -         self.similarity_threshold = 0.2
 -         self.keywords_similarity_weight = 0.5
 -         self.top_n = 8
 -         self.top_k = 1024
 -         self.kb_ids = []
 -         self.kb_vars = []
 -         self.rerank_id = ""
 -         self.empty_response = ""
 -         self.tavily_api_key = ""
 -         self.use_kg = False
 - 
 -     def check(self):
 -         self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold")
 -         self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keyword similarity weight")
 -         self.check_positive_number(self.top_n, "[Retrieval] Top N")
 - 
 - 
 - class Retrieval(ComponentBase, ABC):
 -     component_name = "Retrieval"
 - 
 -     def _run(self, history, **kwargs):
 -         query = self.get_input()
 -         query = str(query["content"][0]) if "content" in query else ""
 -         query = re.split(r"(USER:|ASSISTANT:)", query)[-1]
 - 
 -         kb_ids: list[str] = self._param.kb_ids or []
 - 
 -         kb_vars = self._fetch_outputs_from(self._param.kb_vars)
 - 
 -         if len(kb_vars) > 0:
 -             for kb_var in kb_vars:
 -                 if len(kb_var) == 1:
 -                     kb_var_value = str(kb_var["content"][0])
 - 
 -                     for v in kb_var_value.split(","):
 -                         kb_ids.append(v)
 -                 else:
 -                     for v in kb_var.to_dict("records"):
 -                         kb_ids.append(v["content"])
 - 
 -         filtered_kb_ids: list[str] = [kb_id for kb_id in kb_ids if kb_id]
 - 
 -         kbs = KnowledgebaseService.get_by_ids(filtered_kb_ids)
 -         if not kbs:
 -             return Retrieval.be_output("")
 - 
 -         embd_nms = list(set([kb.embd_id for kb in kbs]))
 -         assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
 - 
 -         embd_mdl = None
 -         if embd_nms:
 -             embd_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, embd_nms[0])
 -             self._canvas.set_embedding_model(embd_nms[0])
 - 
 -         rerank_mdl = None
 -         if self._param.rerank_id:
 -             rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
 - 
 -         if kbs:
 -             query = re.sub(r"^user[::\s]*", "", query, flags=re.IGNORECASE)
 -             kbinfos = settings.retrievaler.retrieval(
 -                 query,
 -                 embd_mdl,
 -                 [kb.tenant_id for kb in kbs],
 -                 filtered_kb_ids,
 -                 1,
 -                 self._param.top_n,
 -                 self._param.similarity_threshold,
 -                 1 - self._param.keywords_similarity_weight,
 -                 aggs=False,
 -                 rerank_mdl=rerank_mdl,
 -                 rank_feature=label_question(query, kbs),
 -             )
 -         else:
 -             kbinfos = {"chunks": [], "doc_aggs": []}
 - 
 -         if self._param.use_kg and kbs:
 -             ck = settings.kg_retrievaler.retrieval(query, [kb.tenant_id for kb in kbs], filtered_kb_ids, embd_mdl, LLMBundle(kbs[0].tenant_id, LLMType.CHAT))
 -             if ck["content_with_weight"]:
 -                 kbinfos["chunks"].insert(0, ck)
 - 
 -         if self._param.tavily_api_key:
 -             tav = Tavily(self._param.tavily_api_key)
 -             tav_res = tav.retrieve_chunks(query)
 -             kbinfos["chunks"].extend(tav_res["chunks"])
 -             kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
 - 
 -         if not kbinfos["chunks"]:
 -             df = Retrieval.be_output("")
 -             if self._param.empty_response and self._param.empty_response.strip():
 -                 df["empty_response"] = self._param.empty_response
 -             return df
 - 
 -         df = pd.DataFrame({"content": kb_prompt(kbinfos, 200000), "chunks": json.dumps(kbinfos["chunks"])})
 -         logging.debug("{} {}".format(query, df))
 -         return df.dropna()
 
 
  |