| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173 |
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
-
- import os, sys
- import re
-
- import numpy as np
-
- sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '../../')))
-
- import argparse
- from api.utils.file_utils import get_project_base_directory
- from deepdoc.vision import Recognizer, LayoutRecognizer, TableStructureRecognizer, OCR, init_in_out
- from deepdoc.vision.seeit import draw_box
-
-
- def main(args):
- images, outputs = init_in_out(args)
- if args.mode.lower() == "layout":
- labels = LayoutRecognizer.labels
- detr = Recognizer(labels, "layout.paper", os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
- if args.mode.lower() == "tsr":
- labels = TableStructureRecognizer.labels
- detr = TableStructureRecognizer()
- ocr = OCR()
-
- layouts = detr(images, float(args.threshold))
- for i, lyt in enumerate(layouts):
- if args.mode.lower() == "tsr":
- #lyt = [t for t in lyt if t["type"] == "table column"]
- html = get_table_html(images[i], lyt, ocr)
- with open(outputs[i]+".html", "w+") as f: f.write(html)
- lyt = [{
- "type": t["label"],
- "bbox": [t["x0"], t["top"], t["x1"], t["bottom"]],
- "score": t["score"]
- } for t in lyt]
- img = draw_box(images[i], lyt, labels, float(args.threshold))
- img.save(outputs[i], quality=95)
- print("save result to: " + outputs[i])
-
-
- def get_table_html(img, tb_cpns, ocr):
- boxes = ocr(np.array(img))
- boxes = Recognizer.sort_Y_firstly(
- [{"x0": b[0][0], "x1": b[1][0],
- "top": b[0][1], "text": t[0],
- "bottom": b[-1][1],
- "layout_type": "table",
- "page_number": 0} for b, t in boxes if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]],
- np.mean([b[-1][1]-b[0][1] for b,_ in boxes]) / 3
- )
-
- def gather(kwd, fzy=10, ption=0.6):
- nonlocal boxes
- eles = Recognizer.sort_Y_firstly(
- [r for r in tb_cpns if re.match(kwd, r["label"])], fzy)
- eles = Recognizer.layouts_cleanup(boxes, eles, 5, ption)
- return Recognizer.sort_Y_firstly(eles, 0)
-
- headers = gather(r".*header$")
- rows = gather(r".* (row|header)")
- spans = gather(r".*spanning")
- clmns = sorted([r for r in tb_cpns if re.match(
- r"table column$", r["label"])], key=lambda x: x["x0"])
- clmns = Recognizer.layouts_cleanup(boxes, clmns, 5, 0.5)
- for b in boxes:
- ii = Recognizer.find_overlapped_with_threashold(b, rows, thr=0.3)
- if ii is not None:
- b["R"] = ii
- b["R_top"] = rows[ii]["top"]
- b["R_bott"] = rows[ii]["bottom"]
-
- ii = Recognizer.find_overlapped_with_threashold(b, headers, thr=0.3)
- if ii is not None:
- b["H_top"] = headers[ii]["top"]
- b["H_bott"] = headers[ii]["bottom"]
- b["H_left"] = headers[ii]["x0"]
- b["H_right"] = headers[ii]["x1"]
- b["H"] = ii
-
- ii = Recognizer.find_overlapped_with_threashold(b, clmns, thr=0.3)
- if ii is not None:
- b["C"] = ii
- b["C_left"] = clmns[ii]["x0"]
- b["C_right"] = clmns[ii]["x1"]
-
- ii = Recognizer.find_overlapped_with_threashold(b, spans, thr=0.3)
- if ii is not None:
- b["H_top"] = spans[ii]["top"]
- b["H_bott"] = spans[ii]["bottom"]
- b["H_left"] = spans[ii]["x0"]
- b["H_right"] = spans[ii]["x1"]
- b["SP"] = ii
- html = """
- <html>
- <head>
- <style>
- ._table_1nkzy_11 {
- margin: auto;
- width: 70%%;
- padding: 10px;
- }
- ._table_1nkzy_11 p {
- margin-bottom: 50px;
- border: 1px solid #e1e1e1;
- }
-
- caption {
- color: #6ac1ca;
- font-size: 20px;
- height: 50px;
- line-height: 50px;
- font-weight: 600;
- margin-bottom: 10px;
- }
-
- ._table_1nkzy_11 table {
- width: 100%%;
- border-collapse: collapse;
- }
-
- th {
- color: #fff;
- background-color: #6ac1ca;
- }
-
- td:hover {
- background: #c1e8e8;
- }
-
- tr:nth-child(even) {
- background-color: #f2f2f2;
- }
-
- ._table_1nkzy_11 th,
- ._table_1nkzy_11 td {
- text-align: center;
- border: 1px solid #ddd;
- padding: 8px;
- }
- </style>
- </head>
- <body>
- %s
- </body>
- </html>
- """% TableStructureRecognizer.construct_table(boxes, html=True)
- return html
-
-
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument('--inputs',
- help="Directory where to store images or PDFs, or a file path to a single image or PDF",
- required=True)
- parser.add_argument('--output_dir', help="Directory where to store the output images. Default: './layouts_outputs'",
- default="./layouts_outputs")
- parser.add_argument('--threshold', help="A threshold to filter out detections. Default: 0.5", default=0.5)
- parser.add_argument('--mode', help="Task mode: layout recognition or table structure recognition", choices=["layout", "tsr"],
- default="layout")
- args = parser.parse_args()
- main(args)
|