| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 | 
							- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import logging
 - import os
 - import time
 - from abc import ABC
 - import pandas as pd
 - import pywencai
 - 
 - from agent.tools.base import ToolParamBase, ToolMeta, ToolBase
 - from api.utils.api_utils import timeout
 - 
 - 
 - class WenCaiParam(ToolParamBase):
 -     """
 -     Define the WenCai component parameters.
 -     """
 - 
 -     def __init__(self):
 -         self.meta:ToolMeta = {
 -             "name": "iwencai",
 -             "description": """
 - iwencai search: search platform is committed to providing hundreds of millions of investors with the most timely, accurate and comprehensive information, covering news, announcements, research reports, blogs, forums, Weibo, characters, etc.
 - robo-advisor intelligent stock selection platform: through AI technology, is committed to providing investors with intelligent stock selection, quantitative investment, main force tracking, value investment, technical analysis and other types of stock selection technologies.
 - fund selection platform: through AI technology, is committed to providing excellent fund, value investment, quantitative analysis and other fund selection technologies for foundation citizens.
 - """,
 -             "parameters": {
 -                 "query": {
 -                     "type": "string",
 -                     "description": "The question/conditions to select stocks.",
 -                     "default": "{sys.query}",
 -                     "required": True
 -                 }
 -             }
 -         }
 -         super().__init__()
 -         self.top_n = 10
 -         self.query_type = "stock"
 - 
 -     def check(self):
 -         self.check_positive_integer(self.top_n, "Top N")
 -         self.check_valid_value(self.query_type, "Query type",
 -                                ['stock', 'zhishu', 'fund', 'hkstock', 'usstock', 'threeboard', 'conbond', 'insurance',
 -                                 'futures', 'lccp',
 -                                 'foreign_exchange'])
 - 
 -     def get_input_form(self) -> dict[str, dict]:
 -         return {
 -             "query": {
 -                 "name": "Query",
 -                 "type": "line"
 -             }
 -         }
 - 
 - class WenCai(ToolBase, ABC):
 -     component_name = "WenCai"
 - 
 -     @timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
 -     def _invoke(self, **kwargs):
 -         if not kwargs.get("query"):
 -             self.set_output("report", "")
 -             return ""
 - 
 -         last_e = ""
 -         for _ in range(self._param.max_retries+1):
 -             try:
 -                 wencai_res = []
 -                 res = pywencai.get(query=kwargs["query"], query_type=self._param.query_type, perpage=self._param.top_n)
 -                 if isinstance(res, pd.DataFrame):
 -                     wencai_res.append(res.to_markdown())
 -                 elif isinstance(res, dict):
 -                     for item in res.items():
 -                         if isinstance(item[1], list):
 -                             wencai_res.append(item[0] + "\n" + pd.DataFrame(item[1]).to_markdown())
 -                         elif isinstance(item[1], str):
 -                             wencai_res.append(item[0] + "\n" + item[1])
 -                         elif isinstance(item[1], dict):
 -                             if "meta" in item[1].keys():
 -                                 continue
 -                             wencai_res.append(pd.DataFrame.from_dict(item[1], orient='index').to_markdown())
 -                         elif isinstance(item[1], pd.DataFrame):
 -                             if "image_url" in item[1].columns:
 -                                 continue
 -                             wencai_res.append(item[1].to_markdown())
 -                         else:
 -                             wencai_res.append(item[0] + "\n" + str(item[1]))
 -                 self.set_output("report", "\n\n".join(wencai_res))
 -                 return self.output("report")
 -             except Exception as e:
 -                 last_e = e
 -                 logging.exception(f"WenCai error: {e}")
 -                 time.sleep(self._param.delay_after_error)
 - 
 -         if last_e:
 -             self.set_output("_ERROR", str(last_e))
 -             return f"WenCai error: {last_e}"
 - 
 -         assert False, self.output()
 - 
 -     def thoughts(self) -> str:
 -         return "Pulling live financial data for `{}`.".format(self.get_input().get("query", "-_-!"))
 
 
  |