| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239 |
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import os
- import re
- from collections import Counter
- from copy import deepcopy
-
- import cv2
- import numpy as np
- from huggingface_hub import snapshot_download
-
- from api.utils.file_utils import get_project_base_directory
- from deepdoc.vision import Recognizer
- from deepdoc.vision.operators import nms
-
-
- class LayoutRecognizer(Recognizer):
- labels = [
- "_background_",
- "Text",
- "Title",
- "Figure",
- "Figure caption",
- "Table",
- "Table caption",
- "Header",
- "Footer",
- "Reference",
- "Equation",
- ]
-
- def __init__(self, domain):
- try:
- model_dir = os.path.join(
- get_project_base_directory(),
- "rag/res/deepdoc")
- super().__init__(self.labels, domain, model_dir)
- except Exception:
- model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
- local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
- local_dir_use_symlinks=False)
- super().__init__(self.labels, domain, model_dir)
-
- self.garbage_layouts = ["footer", "header", "reference"]
-
- def __call__(self, image_list, ocr_res, scale_factor=3,
- thr=0.2, batch_size=16, drop=True):
- def __is_garbage(b):
- patt = [r"^•+$", r"(版权归©|免责条款|地址[::])", r"\.{3,}", "^[0-9]{1,2} / ?[0-9]{1,2}$",
- r"^[0-9]{1,2} of [0-9]{1,2}$", "^http://[^ ]{12,}",
- "(资料|数据)来源[::]", "[0-9a-z._-]+@[a-z0-9-]+\\.[a-z]{2,3}",
- "\\(cid *: *[0-9]+ *\\)"
- ]
- return any([re.search(p, b["text"]) for p in patt])
-
- layouts = super().__call__(image_list, thr, batch_size)
- # save_results(image_list, layouts, self.labels, output_dir='output/', threshold=0.7)
- assert len(image_list) == len(ocr_res)
- # Tag layout type
- boxes = []
- assert len(image_list) == len(layouts)
- garbages = {}
- page_layout = []
- for pn, lts in enumerate(layouts):
- bxs = ocr_res[pn]
- lts = [{"type": b["type"],
- "score": float(b["score"]),
- "x0": b["bbox"][0] / scale_factor, "x1": b["bbox"][2] / scale_factor,
- "top": b["bbox"][1] / scale_factor, "bottom": b["bbox"][-1] / scale_factor,
- "page_number": pn,
- } for b in lts if float(b["score"]) >= 0.8 or b["type"] not in self.garbage_layouts]
- lts = self.sort_Y_firstly(lts, np.mean(
- [lt["bottom"] - lt["top"] for lt in lts]) / 2)
- lts = self.layouts_cleanup(bxs, lts)
- page_layout.append(lts)
-
- # Tag layout type, layouts are ready
- def findLayout(ty):
- nonlocal bxs, lts, self
- lts_ = [lt for lt in lts if lt["type"] == ty]
- i = 0
- while i < len(bxs):
- if bxs[i].get("layout_type"):
- i += 1
- continue
- if __is_garbage(bxs[i]):
- bxs.pop(i)
- continue
-
- ii = self.find_overlapped_with_threashold(bxs[i], lts_,
- thr=0.4)
- if ii is None: # belong to nothing
- bxs[i]["layout_type"] = ""
- i += 1
- continue
- lts_[ii]["visited"] = True
- keep_feats = [
- lts_[
- ii]["type"] == "footer" and bxs[i]["bottom"] < image_list[pn].size[1] * 0.9 / scale_factor,
- lts_[
- ii]["type"] == "header" and bxs[i]["top"] > image_list[pn].size[1] * 0.1 / scale_factor,
- ]
- if drop and lts_[
- ii]["type"] in self.garbage_layouts and not any(keep_feats):
- if lts_[ii]["type"] not in garbages:
- garbages[lts_[ii]["type"]] = []
- garbages[lts_[ii]["type"]].append(bxs[i]["text"])
- bxs.pop(i)
- continue
-
- bxs[i]["layoutno"] = f"{ty}-{ii}"
- bxs[i]["layout_type"] = lts_[ii]["type"] if lts_[
- ii]["type"] != "equation" else "figure"
- i += 1
-
- for lt in ["footer", "header", "reference", "figure caption",
- "table caption", "title", "table", "text", "figure", "equation"]:
- findLayout(lt)
-
- # add box to figure layouts which has not text box
- for i, lt in enumerate(
- [lt for lt in lts if lt["type"] in ["figure", "equation"]]):
- if lt.get("visited"):
- continue
- lt = deepcopy(lt)
- del lt["type"]
- lt["text"] = ""
- lt["layout_type"] = "figure"
- lt["layoutno"] = f"figure-{i}"
- bxs.append(lt)
-
- boxes.extend(bxs)
-
- ocr_res = boxes
-
- garbag_set = set()
- for k in garbages.keys():
- garbages[k] = Counter(garbages[k])
- for g, c in garbages[k].items():
- if c > 1:
- garbag_set.add(g)
-
- ocr_res = [b for b in ocr_res if b["text"].strip() not in garbag_set]
- return ocr_res, page_layout
-
-
- class LayoutRecognizer4YOLOv10(LayoutRecognizer):
- labels = [
- "title",
- "Text",
- "Reference",
- "Figure",
- "Figure caption",
- "Table",
- "Table caption",
- "Table caption",
- "Equation",
- "Figure caption",
- ]
-
- def __init__(self, domain):
- domain = "layout"
- super().__init__(domain)
- self.auto = False
- self.scaleFill = False
- self.scaleup = True
- self.stride = 32
- self.center = True
-
- def preprocess(self, image_list):
- inputs = []
- new_shape = self.input_shape # height, width
- for img in image_list:
- shape = img.shape[:2]# current shape [height, width]
- # Scale ratio (new / old)
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
- # Compute padding
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
- dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
- dw /= 2 # divide padding into 2 sides
- dh /= 2
- ww, hh = new_unpad
- img = np.array(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)).astype(np.float32)
- img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
- top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1))
- left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1))
- img = cv2.copyMakeBorder(
- img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)
- ) # add border
- img /= 255.0
- img = img.transpose(2, 0, 1)
- img = img[np.newaxis, :, :, :].astype(np.float32)
- inputs.append({self.input_names[0]: img, "scale_factor": [shape[1]/ww, shape[0]/hh, dw, dh]})
-
- return inputs
-
- def postprocess(self, boxes, inputs, thr):
- thr = 0.08
- boxes = np.squeeze(boxes)
- scores = boxes[:, 4]
- boxes = boxes[scores > thr, :]
- scores = scores[scores > thr]
- if len(boxes) == 0:
- return []
- class_ids = boxes[:, -1].astype(int)
- boxes = boxes[:, :4]
- boxes[:, 0] -= inputs["scale_factor"][2]
- boxes[:, 2] -= inputs["scale_factor"][2]
- boxes[:, 1] -= inputs["scale_factor"][3]
- boxes[:, 3] -= inputs["scale_factor"][3]
- input_shape = np.array([inputs["scale_factor"][0], inputs["scale_factor"][1], inputs["scale_factor"][0],
- inputs["scale_factor"][1]])
- boxes = np.multiply(boxes, input_shape, dtype=np.float32)
-
- unique_class_ids = np.unique(class_ids)
- indices = []
- for class_id in unique_class_ids:
- class_indices = np.where(class_ids == class_id)[0]
- class_boxes = boxes[class_indices, :]
- class_scores = scores[class_indices]
- class_keep_boxes = nms(class_boxes, class_scores, 0.45)
- indices.extend(class_indices[class_keep_boxes])
-
- return [{
- "type": self.label_list[class_ids[i]].lower(),
- "bbox": [float(t) for t in boxes[i].tolist()],
- "score": float(scores[i])
- } for i in indices]
|