| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import logging
- import binascii
- import time
- from functools import partial
- import re
- from copy import deepcopy
- from timeit import default_timer as timer
- from agentic_reasoning import DeepResearcher
- from api.db import LLMType, ParserType, StatusEnum
- from api.db.db_models import Dialog, DB
- from api.db.services.common_service import CommonService
- from api.db.services.knowledgebase_service import KnowledgebaseService
- from api.db.services.llm_service import TenantLLMService, LLMBundle
- from api import settings
- from rag.app.resume import forbidden_select_fields4resume
- from rag.app.tag import label_question
- from rag.nlp.search import index_name
- from rag.prompts import kb_prompt, message_fit_in, llm_id2llm_type, keyword_extraction, full_question, chunks_format, \
- citation_prompt
- from rag.utils import rmSpace, num_tokens_from_string
- from rag.utils.tavily_conn import Tavily
-
-
- class DialogService(CommonService):
- model = Dialog
-
- @classmethod
- @DB.connection_context()
- def get_list(cls, tenant_id,
- page_number, items_per_page, orderby, desc, id, name):
- chats = cls.model.select()
- if id:
- chats = chats.where(cls.model.id == id)
- if name:
- chats = chats.where(cls.model.name == name)
- chats = chats.where(
- (cls.model.tenant_id == tenant_id)
- & (cls.model.status == StatusEnum.VALID.value)
- )
- if desc:
- chats = chats.order_by(cls.model.getter_by(orderby).desc())
- else:
- chats = chats.order_by(cls.model.getter_by(orderby).asc())
-
- chats = chats.paginate(page_number, items_per_page)
-
- return list(chats.dicts())
-
-
- def chat_solo(dialog, messages, stream=True):
- if llm_id2llm_type(dialog.llm_id) == "image2text":
- chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
- else:
- chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
-
- prompt_config = dialog.prompt_config
- tts_mdl = None
- if prompt_config.get("tts"):
- tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS)
- msg = [{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])}
- for m in messages if m["role"] != "system"]
- if stream:
- last_ans = ""
- for ans in chat_mdl.chat_streamly(prompt_config.get("system", ""), msg, dialog.llm_setting):
- answer = ans
- delta_ans = ans[len(last_ans):]
- if num_tokens_from_string(delta_ans) < 16:
- continue
- last_ans = answer
- yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans), "prompt": "", "created_at": time.time()}
- if delta_ans:
- yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans), "prompt": "", "created_at": time.time()}
- else:
- answer = chat_mdl.chat(prompt_config.get("system", ""), msg, dialog.llm_setting)
- user_content = msg[-1].get("content", "[content not available]")
- logging.debug("User: {}|Assistant: {}".format(user_content, answer))
- yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, answer), "prompt": "", "created_at": time.time()}
-
-
- def chat(dialog, messages, stream=True, **kwargs):
- assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
- if not dialog.kb_ids:
- for ans in chat_solo(dialog, messages, stream):
- yield ans
- return
-
- chat_start_ts = timer()
-
- if llm_id2llm_type(dialog.llm_id) == "image2text":
- llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
- else:
- llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
-
- max_tokens = llm_model_config.get("max_tokens", 8192)
-
- check_llm_ts = timer()
-
- kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids)
- embedding_list = list(set([kb.embd_id for kb in kbs]))
- if len(embedding_list) != 1:
- yield {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
- return {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
-
- embedding_model_name = embedding_list[0]
-
- retriever = settings.retrievaler
-
- questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
- attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None
- if "doc_ids" in messages[-1]:
- attachments = messages[-1]["doc_ids"]
-
- create_retriever_ts = timer()
-
- embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embedding_model_name)
- if not embd_mdl:
- raise LookupError("Embedding model(%s) not found" % embedding_model_name)
-
- bind_embedding_ts = timer()
-
- if llm_id2llm_type(dialog.llm_id) == "image2text":
- chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
- else:
- chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
-
- bind_llm_ts = timer()
-
- prompt_config = dialog.prompt_config
- field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
- tts_mdl = None
- if prompt_config.get("tts"):
- tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS)
- # try to use sql if field mapping is good to go
- if field_map:
- logging.debug("Use SQL to retrieval:{}".format(questions[-1]))
- ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True))
- if ans:
- yield ans
- return
-
- for p in prompt_config["parameters"]:
- if p["key"] == "knowledge":
- continue
- if p["key"] not in kwargs and not p["optional"]:
- raise KeyError("Miss parameter: " + p["key"])
- if p["key"] not in kwargs:
- prompt_config["system"] = prompt_config["system"].replace(
- "{%s}" % p["key"], " ")
-
- if len(questions) > 1 and prompt_config.get("refine_multiturn"):
- questions = [full_question(dialog.tenant_id, dialog.llm_id, messages)]
- else:
- questions = questions[-1:]
-
- refine_question_ts = timer()
-
- rerank_mdl = None
- if dialog.rerank_id:
- rerank_mdl = LLMBundle(dialog.tenant_id, LLMType.RERANK, dialog.rerank_id)
-
- bind_reranker_ts = timer()
- generate_keyword_ts = bind_reranker_ts
- thought = ""
- kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
-
- if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
- knowledges = []
- else:
- if prompt_config.get("keyword", False):
- questions[-1] += keyword_extraction(chat_mdl, questions[-1])
- generate_keyword_ts = timer()
-
- tenant_ids = list(set([kb.tenant_id for kb in kbs]))
-
- knowledges = []
- if prompt_config.get("reasoning", False):
- reasoner = DeepResearcher(chat_mdl,
- prompt_config,
- partial(retriever.retrieval, embd_mdl=embd_mdl, tenant_ids=tenant_ids, kb_ids=dialog.kb_ids, page=1, page_size=dialog.top_n, similarity_threshold=0.2, vector_similarity_weight=0.3))
-
- for think in reasoner.thinking(kbinfos, " ".join(questions)):
- if isinstance(think, str):
- thought = think
- knowledges = [t for t in think.split("\n") if t]
- elif stream:
- yield think
- else:
- kbinfos = retriever.retrieval(" ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n,
- dialog.similarity_threshold,
- dialog.vector_similarity_weight,
- doc_ids=attachments,
- top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl,
- rank_feature=label_question(" ".join(questions), kbs)
- )
- if prompt_config.get("tavily_api_key"):
- tav = Tavily(prompt_config["tavily_api_key"])
- tav_res = tav.retrieve_chunks(" ".join(questions))
- kbinfos["chunks"].extend(tav_res["chunks"])
- kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
- if prompt_config.get("use_kg"):
- ck = settings.kg_retrievaler.retrieval(" ".join(questions),
- tenant_ids,
- dialog.kb_ids,
- embd_mdl,
- LLMBundle(dialog.tenant_id, LLMType.CHAT))
- if ck["content_with_weight"]:
- kbinfos["chunks"].insert(0, ck)
-
- knowledges = kb_prompt(kbinfos, max_tokens)
-
- logging.debug(
- "{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
-
- retrieval_ts = timer()
- if not knowledges and prompt_config.get("empty_response"):
- empty_res = prompt_config["empty_response"]
- yield {"answer": empty_res, "reference": kbinfos, "prompt": "\n\n### Query:\n%s" % " ".join(questions), "audio_binary": tts(tts_mdl, empty_res)}
- return {"answer": prompt_config["empty_response"], "reference": kbinfos}
-
- kwargs["knowledge"] = "\n------\n" + "\n\n------\n\n".join(knowledges)
- gen_conf = dialog.llm_setting
-
- msg = [{"role": "system", "content": prompt_config["system"].format(**kwargs)}]
- prompt4citation = ""
- if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
- prompt4citation = citation_prompt()
- msg.extend([{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])}
- for m in messages if m["role"] != "system"])
- used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.95))
- assert len(msg) >= 2, f"message_fit_in has bug: {msg}"
- prompt = msg[0]["content"]
-
- if "max_tokens" in gen_conf:
- gen_conf["max_tokens"] = min(
- gen_conf["max_tokens"],
- max_tokens - used_token_count)
-
- def decorate_answer(answer):
- nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_ts, questions
-
- refs = []
- ans = answer.split("</think>")
- think = ""
- if len(ans) == 2:
- think = ans[0] + "</think>"
- answer = ans[1]
- if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
- answer = re.sub(r"##[ij]\$\$", "", answer, flags=re.DOTALL)
- if not re.search(r"##[0-9]+\$\$", answer):
- answer, idx = retriever.insert_citations(answer,
- [ck["content_ltks"]
- for ck in kbinfos["chunks"]],
- [ck["vector"]
- for ck in kbinfos["chunks"]],
- embd_mdl,
- tkweight=1 - dialog.vector_similarity_weight,
- vtweight=dialog.vector_similarity_weight)
- else:
- idx = set([])
- for r in re.finditer(r"##([0-9]+)\$\$", answer):
- i = int(r.group(1))
- if i < len(kbinfos["chunks"]):
- idx.add(i)
-
- idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
- recall_docs = [
- d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
- if not recall_docs:
- recall_docs = kbinfos["doc_aggs"]
- kbinfos["doc_aggs"] = recall_docs
-
- refs = deepcopy(kbinfos)
- for c in refs["chunks"]:
- if c.get("vector"):
- del c["vector"]
-
- if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
- answer += " Please set LLM API-Key in 'User Setting -> Model providers -> API-Key'"
- finish_chat_ts = timer()
-
- total_time_cost = (finish_chat_ts - chat_start_ts) * 1000
- check_llm_time_cost = (check_llm_ts - chat_start_ts) * 1000
- create_retriever_time_cost = (create_retriever_ts - check_llm_ts) * 1000
- bind_embedding_time_cost = (bind_embedding_ts - create_retriever_ts) * 1000
- bind_llm_time_cost = (bind_llm_ts - bind_embedding_ts) * 1000
- refine_question_time_cost = (refine_question_ts - bind_llm_ts) * 1000
- bind_reranker_time_cost = (bind_reranker_ts - refine_question_ts) * 1000
- generate_keyword_time_cost = (generate_keyword_ts - bind_reranker_ts) * 1000
- retrieval_time_cost = (retrieval_ts - generate_keyword_ts) * 1000
- generate_result_time_cost = (finish_chat_ts - retrieval_ts) * 1000
-
- prompt += "\n\n### Query:\n%s" % " ".join(questions)
- prompt = f"{prompt}\n\n - Total: {total_time_cost:.1f}ms\n - Check LLM: {check_llm_time_cost:.1f}ms\n - Create retriever: {create_retriever_time_cost:.1f}ms\n - Bind embedding: {bind_embedding_time_cost:.1f}ms\n - Bind LLM: {bind_llm_time_cost:.1f}ms\n - Tune question: {refine_question_time_cost:.1f}ms\n - Bind reranker: {bind_reranker_time_cost:.1f}ms\n - Generate keyword: {generate_keyword_time_cost:.1f}ms\n - Retrieval: {retrieval_time_cost:.1f}ms\n - Generate answer: {generate_result_time_cost:.1f}ms"
- return {"answer": think+answer, "reference": refs, "prompt": re.sub(r"\n", " \n", prompt), "created_at": time.time()}
-
- if stream:
- last_ans = ""
- answer = ""
- for ans in chat_mdl.chat_streamly(prompt+prompt4citation, msg[1:], gen_conf):
- if thought:
- ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
- answer = ans
- delta_ans = ans[len(last_ans):]
- if num_tokens_from_string(delta_ans) < 16:
- continue
- last_ans = answer
- yield {"answer": thought+answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
- delta_ans = answer[len(last_ans):]
- if delta_ans:
- yield {"answer": thought+answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
- yield decorate_answer(thought+answer)
- else:
- answer = chat_mdl.chat(prompt+prompt4citation, msg[1:], gen_conf)
- user_content = msg[-1].get("content", "[content not available]")
- logging.debug("User: {}|Assistant: {}".format(user_content, answer))
- res = decorate_answer(answer)
- res["audio_binary"] = tts(tts_mdl, answer)
- yield res
-
-
- def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
- sys_prompt = "You are a Database Administrator. You need to check the fields of the following tables based on the user's list of questions and write the SQL corresponding to the last question."
- user_prompt = """
- Table name: {};
- Table of database fields are as follows:
- {}
-
- Question are as follows:
- {}
- Please write the SQL, only SQL, without any other explanations or text.
- """.format(
- index_name(tenant_id),
- "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
- question
- )
- tried_times = 0
-
- def get_table():
- nonlocal sys_prompt, user_prompt, question, tried_times
- sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_prompt}], {
- "temperature": 0.06})
- sql = re.sub(r"<think>.*</think>", "", sql, flags=re.DOTALL)
- logging.debug(f"{question} ==> {user_prompt} get SQL: {sql}")
- sql = re.sub(r"[\r\n]+", " ", sql.lower())
- sql = re.sub(r".*select ", "select ", sql.lower())
- sql = re.sub(r" +", " ", sql)
- sql = re.sub(r"([;;]|```).*", "", sql)
- if sql[:len("select ")] != "select ":
- return None, None
- if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()):
- if sql[:len("select *")] != "select *":
- sql = "select doc_id,docnm_kwd," + sql[6:]
- else:
- flds = []
- for k in field_map.keys():
- if k in forbidden_select_fields4resume:
- continue
- if len(flds) > 11:
- break
- flds.append(k)
- sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
-
- logging.debug(f"{question} get SQL(refined): {sql}")
- tried_times += 1
- return settings.retrievaler.sql_retrieval(sql, format="json"), sql
-
- tbl, sql = get_table()
- if tbl is None:
- return None
- if tbl.get("error") and tried_times <= 2:
- user_prompt = """
- Table name: {};
- Table of database fields are as follows:
- {}
-
- Question are as follows:
- {}
- Please write the SQL, only SQL, without any other explanations or text.
-
-
- The SQL error you provided last time is as follows:
- {}
-
- Error issued by database as follows:
- {}
-
- Please correct the error and write SQL again, only SQL, without any other explanations or text.
- """.format(
- index_name(tenant_id),
- "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
- question, sql, tbl["error"]
- )
- tbl, sql = get_table()
- logging.debug("TRY it again: {}".format(sql))
-
- logging.debug("GET table: {}".format(tbl))
- if tbl.get("error") or len(tbl["rows"]) == 0:
- return None
-
- docid_idx = set([ii for ii, c in enumerate(
- tbl["columns"]) if c["name"] == "doc_id"])
- doc_name_idx = set([ii for ii, c in enumerate(
- tbl["columns"]) if c["name"] == "docnm_kwd"])
- column_idx = [ii for ii in range(
- len(tbl["columns"])) if ii not in (docid_idx | doc_name_idx)]
-
- # compose Markdown table
- columns = "|" + "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"],
- tbl["columns"][i]["name"])) for i in
- column_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
-
- line = "|" + "|".join(["------" for _ in range(len(column_idx))]) + \
- ("|------|" if docid_idx and docid_idx else "")
-
- rows = ["|" +
- "|".join([rmSpace(str(r[i])) for i in column_idx]).replace("None", " ") +
- "|" for r in tbl["rows"]]
- rows = [r for r in rows if re.sub(r"[ |]+", "", r)]
- if quota:
- rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
- else:
- rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
- rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)
-
- if not docid_idx or not doc_name_idx:
- logging.warning("SQL missing field: " + sql)
- return {
- "answer": "\n".join([columns, line, rows]),
- "reference": {"chunks": [], "doc_aggs": []},
- "prompt": sys_prompt
- }
-
- docid_idx = list(docid_idx)[0]
- doc_name_idx = list(doc_name_idx)[0]
- doc_aggs = {}
- for r in tbl["rows"]:
- if r[docid_idx] not in doc_aggs:
- doc_aggs[r[docid_idx]] = {"doc_name": r[doc_name_idx], "count": 0}
- doc_aggs[r[docid_idx]]["count"] += 1
- return {
- "answer": "\n".join([columns, line, rows]),
- "reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[doc_name_idx]} for r in tbl["rows"]],
- "doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in
- doc_aggs.items()]},
- "prompt": sys_prompt
- }
-
-
- def tts(tts_mdl, text):
- if not tts_mdl or not text:
- return
- bin = b""
- for chunk in tts_mdl.tts(text):
- bin += chunk
- return binascii.hexlify(bin).decode("utf-8")
-
-
- def ask(question, kb_ids, tenant_id):
- kbs = KnowledgebaseService.get_by_ids(kb_ids)
- embedding_list = list(set([kb.embd_id for kb in kbs]))
-
- is_knowledge_graph = all([kb.parser_id == ParserType.KG for kb in kbs])
- retriever = settings.retrievaler if not is_knowledge_graph else settings.kg_retrievaler
-
- embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embedding_list[0])
- chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
- max_tokens = chat_mdl.max_length
- tenant_ids = list(set([kb.tenant_id for kb in kbs]))
- kbinfos = retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids,
- 1, 12, 0.1, 0.3, aggs=False,
- rank_feature=label_question(question, kbs)
- )
- knowledges = kb_prompt(kbinfos, max_tokens)
- prompt = """
- Role: You're a smart assistant. Your name is Miss R.
- Task: Summarize the information from knowledge bases and answer user's question.
- Requirements and restriction:
- - DO NOT make things up, especially for numbers.
- - If the information from knowledge is irrelevant with user's question, JUST SAY: Sorry, no relevant information provided.
- - Answer with markdown format text.
- - Answer in language of user's question.
- - DO NOT make things up, especially for numbers.
-
- ### Information from knowledge bases
- %s
-
- The above is information from knowledge bases.
-
- """ % "\n".join(knowledges)
- msg = [{"role": "user", "content": question}]
-
- def decorate_answer(answer):
- nonlocal knowledges, kbinfos, prompt
- answer, idx = retriever.insert_citations(answer,
- [ck["content_ltks"]
- for ck in kbinfos["chunks"]],
- [ck["vector"]
- for ck in kbinfos["chunks"]],
- embd_mdl,
- tkweight=0.7,
- vtweight=0.3)
- idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
- recall_docs = [
- d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
- if not recall_docs:
- recall_docs = kbinfos["doc_aggs"]
- kbinfos["doc_aggs"] = recall_docs
- refs = deepcopy(kbinfos)
- for c in refs["chunks"]:
- if c.get("vector"):
- del c["vector"]
-
- if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
- answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
- refs["chunks"] = chunks_format(refs)
- return {"answer": answer, "reference": refs}
-
- answer = ""
- for ans in chat_mdl.chat_streamly(prompt, msg, {"temperature": 0.1}):
- answer = ans
- yield {"answer": answer, "reference": {}}
- yield decorate_answer(answer)
|