Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

conversation_app.py 11KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import re
  17. from flask import request
  18. from flask_login import login_required
  19. from api.db.services.dialog_service import DialogService, ConversationService
  20. from api.db import LLMType
  21. from api.db.services.knowledgebase_service import KnowledgebaseService
  22. from api.db.services.llm_service import LLMService, LLMBundle
  23. from api.settings import access_logger, stat_logger
  24. from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
  25. from api.utils import get_uuid
  26. from api.utils.api_utils import get_json_result
  27. from rag.app.resume import forbidden_select_fields4resume
  28. from rag.llm import ChatModel
  29. from rag.nlp import retrievaler
  30. from rag.nlp.search import index_name
  31. from rag.utils import num_tokens_from_string, encoder, rmSpace
  32. @manager.route('/set', methods=['POST'])
  33. @login_required
  34. @validate_request("dialog_id")
  35. def set_conversation():
  36. req = request.json
  37. conv_id = req.get("conversation_id")
  38. if conv_id:
  39. del req["conversation_id"]
  40. try:
  41. if not ConversationService.update_by_id(conv_id, req):
  42. return get_data_error_result(retmsg="Conversation not found!")
  43. e, conv = ConversationService.get_by_id(conv_id)
  44. if not e:
  45. return get_data_error_result(
  46. retmsg="Fail to update a conversation!")
  47. conv = conv.to_dict()
  48. return get_json_result(data=conv)
  49. except Exception as e:
  50. return server_error_response(e)
  51. try:
  52. e, dia = DialogService.get_by_id(req["dialog_id"])
  53. if not e:
  54. return get_data_error_result(retmsg="Dialog not found")
  55. conv = {
  56. "id": get_uuid(),
  57. "dialog_id": req["dialog_id"],
  58. "name": "New conversation",
  59. "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
  60. }
  61. ConversationService.save(**conv)
  62. e, conv = ConversationService.get_by_id(conv["id"])
  63. if not e:
  64. return get_data_error_result(retmsg="Fail to new a conversation!")
  65. conv = conv.to_dict()
  66. return get_json_result(data=conv)
  67. except Exception as e:
  68. return server_error_response(e)
  69. @manager.route('/get', methods=['GET'])
  70. @login_required
  71. def get():
  72. conv_id = request.args["conversation_id"]
  73. try:
  74. e, conv = ConversationService.get_by_id(conv_id)
  75. if not e:
  76. return get_data_error_result(retmsg="Conversation not found!")
  77. conv = conv.to_dict()
  78. return get_json_result(data=conv)
  79. except Exception as e:
  80. return server_error_response(e)
  81. @manager.route('/rm', methods=['POST'])
  82. @login_required
  83. def rm():
  84. conv_ids = request.json["conversation_ids"]
  85. try:
  86. for cid in conv_ids:
  87. ConversationService.delete_by_id(cid)
  88. return get_json_result(data=True)
  89. except Exception as e:
  90. return server_error_response(e)
  91. @manager.route('/list', methods=['GET'])
  92. @login_required
  93. def list_convsersation():
  94. dialog_id = request.args["dialog_id"]
  95. try:
  96. convs = ConversationService.query(dialog_id=dialog_id)
  97. convs = [d.to_dict() for d in convs]
  98. return get_json_result(data=convs)
  99. except Exception as e:
  100. return server_error_response(e)
  101. def message_fit_in(msg, max_length=4000):
  102. def count():
  103. nonlocal msg
  104. tks_cnts = []
  105. for m in msg: tks_cnts.append({"role": m["role"], "count": num_tokens_from_string(m["content"])})
  106. total = 0
  107. for m in tks_cnts: total += m["count"]
  108. return total
  109. c = count()
  110. if c < max_length: return c, msg
  111. msg = [m for m in msg if m.role in ["system", "user"]]
  112. c = count()
  113. if c < max_length: return c, msg
  114. msg_ = [m for m in msg[:-1] if m.role == "system"]
  115. msg_.append(msg[-1])
  116. msg = msg_
  117. c = count()
  118. if c < max_length: return c, msg
  119. ll = num_tokens_from_string(msg_[0].content)
  120. l = num_tokens_from_string(msg_[-1].content)
  121. if ll / (ll + l) > 0.8:
  122. m = msg_[0].content
  123. m = encoder.decode(encoder.encode(m)[:max_length - l])
  124. msg[0].content = m
  125. return max_length, msg
  126. m = msg_[1].content
  127. m = encoder.decode(encoder.encode(m)[:max_length - l])
  128. msg[1].content = m
  129. return max_length, msg
  130. @manager.route('/completion', methods=['POST'])
  131. @login_required
  132. @validate_request("dialog_id", "messages")
  133. def completion():
  134. req = request.json
  135. msg = []
  136. for m in req["messages"]:
  137. if m["role"] == "system": continue
  138. if m["role"] == "assistant" and not msg: continue
  139. msg.append({"role": m["role"], "content": m["content"]})
  140. try:
  141. e, dia = DialogService.get_by_id(req["dialog_id"])
  142. if not e:
  143. return get_data_error_result(retmsg="Dialog not found!")
  144. del req["dialog_id"]
  145. del req["messages"]
  146. return get_json_result(data=chat(dia, msg, **req))
  147. except Exception as e:
  148. return server_error_response(e)
  149. def chat(dialog, messages, **kwargs):
  150. assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
  151. llm = LLMService.query(llm_name=dialog.llm_id)
  152. if not llm:
  153. raise LookupError("LLM(%s) not found" % dialog.llm_id)
  154. llm = llm[0]
  155. question = messages[-1]["content"]
  156. embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING)
  157. chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
  158. field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
  159. ## try to use sql if field mapping is good to go
  160. if field_map:
  161. stat_logger.info("Use SQL to retrieval.")
  162. markdown_tbl, chunks = use_sql(question, field_map, dialog.tenant_id, chat_mdl)
  163. if markdown_tbl:
  164. return {"answer": markdown_tbl, "retrieval": {"chunks": chunks}}
  165. prompt_config = dialog.prompt_config
  166. for p in prompt_config["parameters"]:
  167. if p["key"] == "knowledge": continue
  168. if p["key"] not in kwargs and not p["optional"]: raise KeyError("Miss parameter: " + p["key"])
  169. if p["key"] not in kwargs:
  170. prompt_config["system"] = prompt_config["system"].replace("{%s}" % p["key"], " ")
  171. kbinfos = retrievaler.retrieval(question, embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
  172. dialog.similarity_threshold,
  173. dialog.vector_similarity_weight, top=1024, aggs=False)
  174. knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
  175. if not knowledges and prompt_config["empty_response"]:
  176. return {"answer": prompt_config["empty_response"], "retrieval": kbinfos}
  177. kwargs["knowledge"] = "\n".join(knowledges)
  178. gen_conf = dialog.llm_setting
  179. msg = [{"role": m["role"], "content": m["content"]} for m in messages if m["role"] != "system"]
  180. used_token_count, msg = message_fit_in(msg, int(llm.max_tokens * 0.97))
  181. if "max_tokens" in gen_conf:
  182. gen_conf["max_tokens"] = min(gen_conf["max_tokens"], llm.max_tokens - used_token_count)
  183. answer = chat_mdl.chat(prompt_config["system"].format(**kwargs), msg, gen_conf)
  184. answer = retrievaler.insert_citations(answer,
  185. [ck["content_ltks"] for ck in kbinfos["chunks"]],
  186. [ck["vector"] for ck in kbinfos["chunks"]],
  187. embd_mdl,
  188. tkweight=1 - dialog.vector_similarity_weight,
  189. vtweight=dialog.vector_similarity_weight)
  190. for c in kbinfos["chunks"]:
  191. if c.get("vector"): del c["vector"]
  192. return {"answer": answer, "retrieval": kbinfos}
  193. def use_sql(question, field_map, tenant_id, chat_mdl):
  194. sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据我的问题写出sql。"
  195. user_promt = """
  196. 表名:{};
  197. 数据库表字段说明如下:
  198. {}
  199. 问题:{}
  200. 请写出SQL,且只要SQL,不要有其他说明及文字。
  201. """.format(
  202. index_name(tenant_id),
  203. "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
  204. question
  205. )
  206. sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {"temperature": 0.06})
  207. stat_logger.info(f"“{question}” get SQL: {sql}")
  208. sql = re.sub(r"[\r\n]+", " ", sql.lower())
  209. sql = re.sub(r".*?select ", "select ", sql.lower())
  210. sql = re.sub(r" +", " ", sql)
  211. sql = re.sub(r"([;;]|```).*", "", sql)
  212. if sql[:len("select ")] != "select ":
  213. return None, None
  214. if sql[:len("select *")] != "select *":
  215. sql = "select doc_id,docnm_kwd," + sql[6:]
  216. else:
  217. flds = []
  218. for k in field_map.keys():
  219. if k in forbidden_select_fields4resume:continue
  220. if len(flds) > 11:break
  221. flds.append(k)
  222. sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
  223. stat_logger.info(f"“{question}” get SQL(refined): {sql}")
  224. tbl = retrievaler.sql_retrieval(sql, format="json")
  225. if not tbl or len(tbl["rows"]) == 0: return None, None
  226. docid_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "doc_id"])
  227. docnm_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "docnm_kwd"])
  228. clmn_idx = [ii for ii in range(len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)]
  229. # compose markdown table
  230. clmns = "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"], f"C{i}")) for i in clmn_idx]) + "|原文"
  231. line = "|".join(["------" for _ in range(len(clmn_idx))]) + "|------"
  232. rows = ["|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") + "|" for r in tbl["rows"]]
  233. if not docid_idx or not docnm_idx:
  234. access_logger.error("SQL missing field: " + sql)
  235. return "\n".join([clmns, line, "\n".join(rows)]), []
  236. rows = "\n".join([r + f"##{ii}$$" for ii, r in enumerate(rows)])
  237. docid_idx = list(docid_idx)[0]
  238. docnm_idx = list(docnm_idx)[0]
  239. return "\n".join([clmns, line, rows]), [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]]