| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503 | 
							- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - 
 - # from beartype import BeartypeConf
 - # from beartype.claw import beartype_all  # <-- you didn't sign up for this
 - # beartype_all(conf=BeartypeConf(violation_type=UserWarning))    # <-- emit warnings from all code
 - 
 - import logging
 - import sys
 - from api.utils.log_utils import initRootLogger
 - 
 - CONSUMER_NO = "0" if len(sys.argv) < 2 else sys.argv[1]
 - initRootLogger(f"task_executor_{CONSUMER_NO}")
 - for module in ["pdfminer"]:
 -     module_logger = logging.getLogger(module)
 -     module_logger.setLevel(logging.WARNING)
 - for module in ["peewee"]:
 -     module_logger = logging.getLogger(module)
 -     module_logger.handlers.clear()
 -     module_logger.propagate = True
 - 
 - from datetime import datetime
 - import json
 - import os
 - import hashlib
 - import copy
 - import re
 - import sys
 - import time
 - import threading
 - from functools import partial
 - from io import BytesIO
 - from multiprocessing.context import TimeoutError
 - from timeit import default_timer as timer
 - 
 - import numpy as np
 - 
 - from api.db import LLMType, ParserType
 - from api.db.services.dialog_service import keyword_extraction, question_proposal
 - from api.db.services.document_service import DocumentService
 - from api.db.services.llm_service import LLMBundle
 - from api.db.services.task_service import TaskService
 - from api.db.services.file2document_service import File2DocumentService
 - from api import settings
 - from api.db.db_models import close_connection
 - from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one, audio, \
 -     knowledge_graph, email
 - from rag.nlp import search, rag_tokenizer
 - from rag.raptor import RecursiveAbstractiveProcessing4TreeOrganizedRetrieval as Raptor
 - from rag.settings import DOC_MAXIMUM_SIZE, SVR_QUEUE_NAME
 - from rag.utils import rmSpace, num_tokens_from_string
 - from rag.utils.redis_conn import REDIS_CONN, Payload
 - from rag.utils.storage_factory import STORAGE_IMPL
 - 
 - BATCH_SIZE = 64
 - 
 - FACTORY = {
 -     "general": naive,
 -     ParserType.NAIVE.value: naive,
 -     ParserType.PAPER.value: paper,
 -     ParserType.BOOK.value: book,
 -     ParserType.PRESENTATION.value: presentation,
 -     ParserType.MANUAL.value: manual,
 -     ParserType.LAWS.value: laws,
 -     ParserType.QA.value: qa,
 -     ParserType.TABLE.value: table,
 -     ParserType.RESUME.value: resume,
 -     ParserType.PICTURE.value: picture,
 -     ParserType.ONE.value: one,
 -     ParserType.AUDIO.value: audio,
 -     ParserType.EMAIL.value: email,
 -     ParserType.KG.value: knowledge_graph
 - }
 - 
 - CONSUMER_NAME = "task_consumer_" + CONSUMER_NO
 - PAYLOAD: Payload | None = None
 - BOOT_AT = datetime.now().isoformat()
 - PENDING_TASKS = 0
 - LAG_TASKS = 0
 - 
 - mt_lock = threading.Lock()
 - DONE_TASKS = 0
 - FAILED_TASKS = 0
 - CURRENT_TASK = None
 - 
 - 
 - def set_progress(task_id, from_page=0, to_page=-1, prog=None, msg="Processing..."):
 -     global PAYLOAD
 -     if prog is not None and prog < 0:
 -         msg = "[ERROR]" + msg
 -     cancel = TaskService.do_cancel(task_id)
 -     if cancel:
 -         msg += " [Canceled]"
 -         prog = -1
 - 
 -     if to_page > 0:
 -         if msg:
 -             msg = f"Page({from_page + 1}~{to_page + 1}): " + msg
 -     d = {"progress_msg": msg}
 -     if prog is not None:
 -         d["progress"] = prog
 -     try:
 -         TaskService.update_progress(task_id, d)
 -     except Exception:
 -         logging.exception(f"set_progress({task_id}) got exception")
 - 
 -     close_connection()
 -     if cancel:
 -         if PAYLOAD:
 -             PAYLOAD.ack()
 -             PAYLOAD = None
 -         os._exit(0)
 - 
 - 
 - def collect():
 -     global CONSUMER_NAME, PAYLOAD, DONE_TASKS, FAILED_TASKS
 -     try:
 -         PAYLOAD = REDIS_CONN.get_unacked_for(CONSUMER_NAME, SVR_QUEUE_NAME, "rag_flow_svr_task_broker")
 -         if not PAYLOAD:
 -             PAYLOAD = REDIS_CONN.queue_consumer(SVR_QUEUE_NAME, "rag_flow_svr_task_broker", CONSUMER_NAME)
 -         if not PAYLOAD:
 -             time.sleep(1)
 -             return None
 -     except Exception:
 -         logging.exception("Get task event from queue exception")
 -         return None
 - 
 -     msg = PAYLOAD.get_message()
 -     if not msg:
 -         return None
 - 
 -     if TaskService.do_cancel(msg["id"]):
 -         with mt_lock:
 -             DONE_TASKS += 1
 -         logging.info("Task {} has been canceled.".format(msg["id"]))
 -         return None
 -     task = TaskService.get_task(msg["id"])
 -     if not task:
 -         with mt_lock:
 -             DONE_TASKS += 1
 -         logging.warning("{} empty task!".format(msg["id"]))
 -         return None
 - 
 -     if msg.get("type", "") == "raptor":
 -         task["task_type"] = "raptor"
 -     return task
 - 
 - 
 - def get_storage_binary(bucket, name):
 -     return STORAGE_IMPL.get(bucket, name)
 - 
 - 
 - def build(row):
 -     if row["size"] > DOC_MAXIMUM_SIZE:
 -         set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
 -                                              (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
 -         return []
 - 
 -     callback = partial(
 -         set_progress,
 -         row["id"],
 -         row["from_page"],
 -         row["to_page"])
 -     chunker = FACTORY[row["parser_id"].lower()]
 -     try:
 -         st = timer()
 -         bucket, name = File2DocumentService.get_storage_address(doc_id=row["doc_id"])
 -         binary = get_storage_binary(bucket, name)
 -         logging.info(
 -             "From minio({}) {}/{}".format(timer() - st, row["location"], row["name"]))
 -     except TimeoutError:
 -         callback(-1, "Internal server error: Fetch file from minio timeout. Could you try it again.")
 -         logging.exception(
 -             "Minio {}/{} got timeout: Fetch file from minio timeout.".format(row["location"], row["name"]))
 -         raise
 -     except Exception as e:
 -         if re.search("(No such file|not found)", str(e)):
 -             callback(-1, "Can not find file <%s> from minio. Could you try it again?" % row["name"])
 -         else:
 -             callback(-1, "Get file from minio: %s" % str(e).replace("'", ""))
 -         logging.exception("Chunking {}/{} got exception".format(row["location"], row["name"]))
 -         raise
 - 
 -     try:
 -         cks = chunker.chunk(row["name"], binary=binary, from_page=row["from_page"],
 -                             to_page=row["to_page"], lang=row["language"], callback=callback,
 -                             kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
 -         logging.info("Chunking({}) {}/{} done".format(timer() - st, row["location"], row["name"]))
 -     except Exception as e:
 -         callback(-1, "Internal server error while chunking: %s" %
 -                  str(e).replace("'", ""))
 -         logging.exception("Chunking {}/{} got exception".format(row["location"], row["name"]))
 -         raise
 - 
 -     docs = []
 -     doc = {
 -         "doc_id": row["doc_id"],
 -         "kb_id": str(row["kb_id"])
 -     }
 -     el = 0
 -     for ck in cks:
 -         d = copy.deepcopy(doc)
 -         d.update(ck)
 -         md5 = hashlib.md5()
 -         md5.update((ck["content_with_weight"] +
 -                     str(d["doc_id"])).encode("utf-8"))
 -         d["id"] = md5.hexdigest()
 -         d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
 -         d["create_timestamp_flt"] = datetime.now().timestamp()
 -         if not d.get("image"):
 -             _ = d.pop("image", None)
 -             d["img_id"] = ""
 -             d["page_num_list"] = json.dumps([])
 -             d["position_list"] = json.dumps([])
 -             d["top_list"] = json.dumps([])
 -             docs.append(d)
 -             continue
 - 
 -         try:
 -             output_buffer = BytesIO()
 -             if isinstance(d["image"], bytes):
 -                 output_buffer = BytesIO(d["image"])
 -             else:
 -                 d["image"].save(output_buffer, format='JPEG')
 - 
 -             st = timer()
 -             STORAGE_IMPL.put(row["kb_id"], d["id"], output_buffer.getvalue())
 -             el += timer() - st
 -         except Exception:
 -             logging.exception(
 -                 "Saving image of chunk {}/{}/{} got exception".format(row["location"], row["name"], d["_id"]))
 -             raise
 - 
 -         d["img_id"] = "{}-{}".format(row["kb_id"], d["id"])
 -         del d["image"]
 -         docs.append(d)
 -     logging.info("MINIO PUT({}):{}".format(row["name"], el))
 - 
 -     if row["parser_config"].get("auto_keywords", 0):
 -         st = timer()
 -         callback(msg="Start to generate keywords for every chunk ...")
 -         chat_mdl = LLMBundle(row["tenant_id"], LLMType.CHAT, llm_name=row["llm_id"], lang=row["language"])
 -         for d in docs:
 -             d["important_kwd"] = keyword_extraction(chat_mdl, d["content_with_weight"],
 -                                                     row["parser_config"]["auto_keywords"]).split(",")
 -             d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"]))
 -         callback(msg="Keywords generation completed in {:.2f}s".format(timer() - st))
 - 
 -     if row["parser_config"].get("auto_questions", 0):
 -         st = timer()
 -         callback(msg="Start to generate questions for every chunk ...")
 -         chat_mdl = LLMBundle(row["tenant_id"], LLMType.CHAT, llm_name=row["llm_id"], lang=row["language"])
 -         for d in docs:
 -             qst = question_proposal(chat_mdl, d["content_with_weight"], row["parser_config"]["auto_questions"])
 -             d["content_with_weight"] = f"Question: \n{qst}\n\nAnswer:\n" + d["content_with_weight"]
 -             qst = rag_tokenizer.tokenize(qst)
 -             if "content_ltks" in d:
 -                 d["content_ltks"] += " " + qst
 -             if "content_sm_ltks" in d:
 -                 d["content_sm_ltks"] += " " + rag_tokenizer.fine_grained_tokenize(qst)
 -         callback(msg="Question generation completed in {:.2f}s".format(timer() - st))
 - 
 -     return docs
 - 
 - 
 - def init_kb(row, vector_size: int):
 -     idxnm = search.index_name(row["tenant_id"])
 -     return settings.docStoreConn.createIdx(idxnm, row["kb_id"], vector_size)
 - 
 - 
 - def embedding(docs, mdl, parser_config=None, callback=None):
 -     if parser_config is None:
 -         parser_config = {}
 -     batch_size = 32
 -     tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [
 -         re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", d["content_with_weight"]) for d in docs]
 -     tk_count = 0
 -     if len(tts) == len(cnts):
 -         tts_ = np.array([])
 -         for i in range(0, len(tts), batch_size):
 -             vts, c = mdl.encode(tts[i: i + batch_size])
 -             if len(tts_) == 0:
 -                 tts_ = vts
 -             else:
 -                 tts_ = np.concatenate((tts_, vts), axis=0)
 -             tk_count += c
 -             callback(prog=0.6 + 0.1 * (i + 1) / len(tts), msg="")
 -         tts = tts_
 - 
 -     cnts_ = np.array([])
 -     for i in range(0, len(cnts), batch_size):
 -         vts, c = mdl.encode(cnts[i: i + batch_size])
 -         if len(cnts_) == 0:
 -             cnts_ = vts
 -         else:
 -             cnts_ = np.concatenate((cnts_, vts), axis=0)
 -         tk_count += c
 -         callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="")
 -     cnts = cnts_
 - 
 -     title_w = float(parser_config.get("filename_embd_weight", 0.1))
 -     vects = (title_w * tts + (1 - title_w) *
 -              cnts) if len(tts) == len(cnts) else cnts
 - 
 -     assert len(vects) == len(docs)
 -     vector_size = 0
 -     for i, d in enumerate(docs):
 -         v = vects[i].tolist()
 -         vector_size = len(v)
 -         d["q_%d_vec" % len(v)] = v
 -     return tk_count, vector_size
 - 
 - 
 - def run_raptor(row, chat_mdl, embd_mdl, callback=None):
 -     vts, _ = embd_mdl.encode(["ok"])
 -     vector_size = len(vts[0])
 -     vctr_nm = "q_%d_vec" % vector_size
 -     chunks = []
 -     for d in settings.retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])],
 -                                              fields=["content_with_weight", vctr_nm]):
 -         chunks.append((d["content_with_weight"], np.array(d[vctr_nm])))
 - 
 -     raptor = Raptor(
 -         row["parser_config"]["raptor"].get("max_cluster", 64),
 -         chat_mdl,
 -         embd_mdl,
 -         row["parser_config"]["raptor"]["prompt"],
 -         row["parser_config"]["raptor"]["max_token"],
 -         row["parser_config"]["raptor"]["threshold"]
 -     )
 -     original_length = len(chunks)
 -     raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback)
 -     doc = {
 -         "doc_id": row["doc_id"],
 -         "kb_id": [str(row["kb_id"])],
 -         "docnm_kwd": row["name"],
 -         "title_tks": rag_tokenizer.tokenize(row["name"])
 -     }
 -     res = []
 -     tk_count = 0
 -     for content, vctr in chunks[original_length:]:
 -         d = copy.deepcopy(doc)
 -         md5 = hashlib.md5()
 -         md5.update((content + str(d["doc_id"])).encode("utf-8"))
 -         d["id"] = md5.hexdigest()
 -         d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
 -         d["create_timestamp_flt"] = datetime.now().timestamp()
 -         d[vctr_nm] = vctr.tolist()
 -         d["content_with_weight"] = content
 -         d["content_ltks"] = rag_tokenizer.tokenize(content)
 -         d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
 -         res.append(d)
 -         tk_count += num_tokens_from_string(content)
 -     return res, tk_count, vector_size
 - 
 - 
 - def do_handle_task(r):
 -     callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
 -     try:
 -         embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING, llm_name=r["embd_id"], lang=r["language"])
 -     except Exception as e:
 -         callback(-1, msg=str(e))
 -         raise
 -     if r.get("task_type", "") == "raptor":
 -         try:
 -             chat_mdl = LLMBundle(r["tenant_id"], LLMType.CHAT, llm_name=r["llm_id"], lang=r["language"])
 -             cks, tk_count, vector_size = run_raptor(r, chat_mdl, embd_mdl, callback)
 -         except Exception as e:
 -             callback(-1, msg=str(e))
 -             raise
 -     else:
 -         st = timer()
 -         cks = build(r)
 -         logging.info("Build chunks({}): {}".format(r["name"], timer() - st))
 -         if cks is None:
 -             return
 -         if not cks:
 -             callback(1., "No chunk! Done!")
 -             return
 -         # TODO: exception handler
 -         ## set_progress(r["did"], -1, "ERROR: ")
 -         callback(
 -                 msg="Finished slicing files ({} chunks in {:.2f}s). Start to embedding the content.".format(len(cks),
 -                                                                                                             timer() - st)
 -         )
 -         st = timer()
 -         try:
 -             tk_count, vector_size = embedding(cks, embd_mdl, r["parser_config"], callback)
 -         except Exception as e:
 -             callback(-1, "Embedding error:{}".format(str(e)))
 -             logging.exception("run_rembedding got exception")
 -             tk_count = 0
 -             raise
 -         logging.info("Embedding elapsed({}): {:.2f}".format(r["name"], timer() - st))
 -         callback(msg="Finished embedding (in {:.2f}s)! Start to build index!".format(timer() - st))
 -     # logging.info(f"task_executor init_kb index {search.index_name(r["tenant_id"])} embd_mdl {embd_mdl.llm_name} vector length {vector_size}")
 -     init_kb(r, vector_size)
 -     chunk_count = len(set([c["id"] for c in cks]))
 -     st = timer()
 -     es_r = ""
 -     es_bulk_size = 4
 -     for b in range(0, len(cks), es_bulk_size):
 -         es_r = settings.docStoreConn.insert(cks[b:b + es_bulk_size], search.index_name(r["tenant_id"]), r["kb_id"])
 -         if b % 128 == 0:
 -             callback(prog=0.8 + 0.1 * (b + 1) / len(cks), msg="")
 -     logging.info("Indexing elapsed({}): {:.2f}".format(r["name"], timer() - st))
 -     if es_r:
 -         callback(-1, "Insert chunk error, detail info please check log file. Please also check Elasticsearch/Infinity status!")
 -         settings.docStoreConn.delete({"doc_id": r["doc_id"]}, search.index_name(r["tenant_id"]), r["kb_id"])
 -         logging.error('Insert chunk error: ' + str(es_r))
 -         raise Exception('Insert chunk error: ' + str(es_r))
 - 
 -     if TaskService.do_cancel(r["id"]):
 -         settings.docStoreConn.delete({"doc_id": r["doc_id"]}, search.index_name(r["tenant_id"]), r["kb_id"])
 -         return
 - 
 -     callback(msg="Indexing elapsed in {:.2f}s.".format(timer() - st))
 -     callback(1., "Done!")
 -     DocumentService.increment_chunk_num(
 -         r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
 -     logging.info(
 -         "Chunk doc({}), token({}), chunks({}), elapsed:{:.2f}".format(
 -                 r["id"], tk_count, len(cks), timer() - st))
 - 
 - 
 - def handle_task():
 -     global PAYLOAD, mt_lock, DONE_TASKS, FAILED_TASKS, CURRENT_TASK
 -     task = collect()
 -     if task:
 -         try:
 -             logging.info(f"handle_task begin for task {json.dumps(task)}")
 -             with mt_lock:
 -                 CURRENT_TASK = copy.deepcopy(task)
 -             do_handle_task(task)
 -             with mt_lock:
 -                 DONE_TASKS += 1
 -                 CURRENT_TASK = None
 -             logging.info(f"handle_task done for task {json.dumps(task)}")
 -         except Exception:
 -             with mt_lock:
 -                 FAILED_TASKS += 1
 -                 CURRENT_TASK = None
 -             logging.exception(f"handle_task got exception for task {json.dumps(task)}")
 -     if PAYLOAD:
 -         PAYLOAD.ack()
 -         PAYLOAD = None
 - 
 - 
 - def report_status():
 -     global CONSUMER_NAME, BOOT_AT, PENDING_TASKS, LAG_TASKS, mt_lock, DONE_TASKS, FAILED_TASKS, CURRENT_TASK
 -     REDIS_CONN.sadd("TASKEXE", CONSUMER_NAME)
 -     while True:
 -         try:
 -             now = datetime.now()
 -             group_info = REDIS_CONN.queue_info(SVR_QUEUE_NAME, "rag_flow_svr_task_broker")
 -             if group_info is not None:
 -                 PENDING_TASKS = int(group_info["pending"])
 -                 LAG_TASKS = int(group_info["lag"])
 - 
 -             with mt_lock:
 -                 heartbeat = json.dumps({
 -                     "name": CONSUMER_NAME,
 -                     "now": now.isoformat(),
 -                     "boot_at": BOOT_AT,
 -                     "pending": PENDING_TASKS,
 -                     "lag": LAG_TASKS,
 -                     "done": DONE_TASKS,
 -                     "failed": FAILED_TASKS,
 -                     "current": CURRENT_TASK,
 -                 })
 -             REDIS_CONN.zadd(CONSUMER_NAME, heartbeat, now.timestamp())
 -             logging.info(f"{CONSUMER_NAME} reported heartbeat: {heartbeat}")
 - 
 -             expired = REDIS_CONN.zcount(CONSUMER_NAME, 0, now.timestamp() - 60 * 30)
 -             if expired > 0:
 -                 REDIS_CONN.zpopmin(CONSUMER_NAME, expired)
 -         except Exception:
 -             logging.exception("report_status got exception")
 -         time.sleep(30)
 - 
 - def main():
 -     settings.init_settings()
 -     background_thread = threading.Thread(target=report_status)
 -     background_thread.daemon = True
 -     background_thread.start()
 - 
 -     while True:
 -         handle_task()
 - 
 - if __name__ == "__main__":
 -     main()
 
 
  |