Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

task_executor.py 19KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. # from beartype import BeartypeConf
  16. # from beartype.claw import beartype_all # <-- you didn't sign up for this
  17. # beartype_all(conf=BeartypeConf(violation_type=UserWarning)) # <-- emit warnings from all code
  18. import logging
  19. import sys
  20. from api.utils.log_utils import initRootLogger
  21. CONSUMER_NO = "0" if len(sys.argv) < 2 else sys.argv[1]
  22. initRootLogger(f"task_executor_{CONSUMER_NO}")
  23. for module in ["pdfminer"]:
  24. module_logger = logging.getLogger(module)
  25. module_logger.setLevel(logging.WARNING)
  26. for module in ["peewee"]:
  27. module_logger = logging.getLogger(module)
  28. module_logger.handlers.clear()
  29. module_logger.propagate = True
  30. from datetime import datetime
  31. import json
  32. import os
  33. import hashlib
  34. import copy
  35. import re
  36. import sys
  37. import time
  38. import threading
  39. from functools import partial
  40. from io import BytesIO
  41. from multiprocessing.context import TimeoutError
  42. from timeit import default_timer as timer
  43. import numpy as np
  44. from api.db import LLMType, ParserType
  45. from api.db.services.dialog_service import keyword_extraction, question_proposal
  46. from api.db.services.document_service import DocumentService
  47. from api.db.services.llm_service import LLMBundle
  48. from api.db.services.task_service import TaskService
  49. from api.db.services.file2document_service import File2DocumentService
  50. from api import settings
  51. from api.db.db_models import close_connection
  52. from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one, audio, \
  53. knowledge_graph, email
  54. from rag.nlp import search, rag_tokenizer
  55. from rag.raptor import RecursiveAbstractiveProcessing4TreeOrganizedRetrieval as Raptor
  56. from rag.settings import DOC_MAXIMUM_SIZE, SVR_QUEUE_NAME
  57. from rag.utils import rmSpace, num_tokens_from_string
  58. from rag.utils.redis_conn import REDIS_CONN, Payload
  59. from rag.utils.storage_factory import STORAGE_IMPL
  60. BATCH_SIZE = 64
  61. FACTORY = {
  62. "general": naive,
  63. ParserType.NAIVE.value: naive,
  64. ParserType.PAPER.value: paper,
  65. ParserType.BOOK.value: book,
  66. ParserType.PRESENTATION.value: presentation,
  67. ParserType.MANUAL.value: manual,
  68. ParserType.LAWS.value: laws,
  69. ParserType.QA.value: qa,
  70. ParserType.TABLE.value: table,
  71. ParserType.RESUME.value: resume,
  72. ParserType.PICTURE.value: picture,
  73. ParserType.ONE.value: one,
  74. ParserType.AUDIO.value: audio,
  75. ParserType.EMAIL.value: email,
  76. ParserType.KG.value: knowledge_graph
  77. }
  78. CONSUMER_NAME = "task_consumer_" + CONSUMER_NO
  79. PAYLOAD: Payload | None = None
  80. BOOT_AT = datetime.now().isoformat()
  81. PENDING_TASKS = 0
  82. LAG_TASKS = 0
  83. mt_lock = threading.Lock()
  84. DONE_TASKS = 0
  85. FAILED_TASKS = 0
  86. CURRENT_TASK = None
  87. def set_progress(task_id, from_page=0, to_page=-1, prog=None, msg="Processing..."):
  88. global PAYLOAD
  89. if prog is not None and prog < 0:
  90. msg = "[ERROR]" + msg
  91. cancel = TaskService.do_cancel(task_id)
  92. if cancel:
  93. msg += " [Canceled]"
  94. prog = -1
  95. if to_page > 0:
  96. if msg:
  97. msg = f"Page({from_page + 1}~{to_page + 1}): " + msg
  98. d = {"progress_msg": msg}
  99. if prog is not None:
  100. d["progress"] = prog
  101. try:
  102. TaskService.update_progress(task_id, d)
  103. except Exception:
  104. logging.exception(f"set_progress({task_id}) got exception")
  105. close_connection()
  106. if cancel:
  107. if PAYLOAD:
  108. PAYLOAD.ack()
  109. PAYLOAD = None
  110. os._exit(0)
  111. def collect():
  112. global CONSUMER_NAME, PAYLOAD, DONE_TASKS, FAILED_TASKS
  113. try:
  114. PAYLOAD = REDIS_CONN.get_unacked_for(CONSUMER_NAME, SVR_QUEUE_NAME, "rag_flow_svr_task_broker")
  115. if not PAYLOAD:
  116. PAYLOAD = REDIS_CONN.queue_consumer(SVR_QUEUE_NAME, "rag_flow_svr_task_broker", CONSUMER_NAME)
  117. if not PAYLOAD:
  118. time.sleep(1)
  119. return None
  120. except Exception:
  121. logging.exception("Get task event from queue exception")
  122. return None
  123. msg = PAYLOAD.get_message()
  124. if not msg:
  125. return None
  126. if TaskService.do_cancel(msg["id"]):
  127. with mt_lock:
  128. DONE_TASKS += 1
  129. logging.info("Task {} has been canceled.".format(msg["id"]))
  130. return None
  131. task = TaskService.get_task(msg["id"])
  132. if not task:
  133. with mt_lock:
  134. DONE_TASKS += 1
  135. logging.warning("{} empty task!".format(msg["id"]))
  136. return None
  137. if msg.get("type", "") == "raptor":
  138. task["task_type"] = "raptor"
  139. return task
  140. def get_storage_binary(bucket, name):
  141. return STORAGE_IMPL.get(bucket, name)
  142. def build(row):
  143. if row["size"] > DOC_MAXIMUM_SIZE:
  144. set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
  145. (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
  146. return []
  147. callback = partial(
  148. set_progress,
  149. row["id"],
  150. row["from_page"],
  151. row["to_page"])
  152. chunker = FACTORY[row["parser_id"].lower()]
  153. try:
  154. st = timer()
  155. bucket, name = File2DocumentService.get_storage_address(doc_id=row["doc_id"])
  156. binary = get_storage_binary(bucket, name)
  157. logging.info(
  158. "From minio({}) {}/{}".format(timer() - st, row["location"], row["name"]))
  159. except TimeoutError:
  160. callback(-1, "Internal server error: Fetch file from minio timeout. Could you try it again.")
  161. logging.exception(
  162. "Minio {}/{} got timeout: Fetch file from minio timeout.".format(row["location"], row["name"]))
  163. raise
  164. except Exception as e:
  165. if re.search("(No such file|not found)", str(e)):
  166. callback(-1, "Can not find file <%s> from minio. Could you try it again?" % row["name"])
  167. else:
  168. callback(-1, "Get file from minio: %s" % str(e).replace("'", ""))
  169. logging.exception("Chunking {}/{} got exception".format(row["location"], row["name"]))
  170. raise
  171. try:
  172. cks = chunker.chunk(row["name"], binary=binary, from_page=row["from_page"],
  173. to_page=row["to_page"], lang=row["language"], callback=callback,
  174. kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
  175. logging.info("Chunking({}) {}/{} done".format(timer() - st, row["location"], row["name"]))
  176. except Exception as e:
  177. callback(-1, "Internal server error while chunking: %s" %
  178. str(e).replace("'", ""))
  179. logging.exception("Chunking {}/{} got exception".format(row["location"], row["name"]))
  180. raise
  181. docs = []
  182. doc = {
  183. "doc_id": row["doc_id"],
  184. "kb_id": str(row["kb_id"])
  185. }
  186. el = 0
  187. for ck in cks:
  188. d = copy.deepcopy(doc)
  189. d.update(ck)
  190. md5 = hashlib.md5()
  191. md5.update((ck["content_with_weight"] +
  192. str(d["doc_id"])).encode("utf-8"))
  193. d["id"] = md5.hexdigest()
  194. d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
  195. d["create_timestamp_flt"] = datetime.now().timestamp()
  196. if not d.get("image"):
  197. _ = d.pop("image", None)
  198. d["img_id"] = ""
  199. d["page_num_list"] = json.dumps([])
  200. d["position_list"] = json.dumps([])
  201. d["top_list"] = json.dumps([])
  202. docs.append(d)
  203. continue
  204. try:
  205. output_buffer = BytesIO()
  206. if isinstance(d["image"], bytes):
  207. output_buffer = BytesIO(d["image"])
  208. else:
  209. d["image"].save(output_buffer, format='JPEG')
  210. st = timer()
  211. STORAGE_IMPL.put(row["kb_id"], d["id"], output_buffer.getvalue())
  212. el += timer() - st
  213. except Exception:
  214. logging.exception(
  215. "Saving image of chunk {}/{}/{} got exception".format(row["location"], row["name"], d["_id"]))
  216. raise
  217. d["img_id"] = "{}-{}".format(row["kb_id"], d["id"])
  218. del d["image"]
  219. docs.append(d)
  220. logging.info("MINIO PUT({}):{}".format(row["name"], el))
  221. if row["parser_config"].get("auto_keywords", 0):
  222. st = timer()
  223. callback(msg="Start to generate keywords for every chunk ...")
  224. chat_mdl = LLMBundle(row["tenant_id"], LLMType.CHAT, llm_name=row["llm_id"], lang=row["language"])
  225. for d in docs:
  226. d["important_kwd"] = keyword_extraction(chat_mdl, d["content_with_weight"],
  227. row["parser_config"]["auto_keywords"]).split(",")
  228. d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"]))
  229. callback(msg="Keywords generation completed in {:.2f}s".format(timer() - st))
  230. if row["parser_config"].get("auto_questions", 0):
  231. st = timer()
  232. callback(msg="Start to generate questions for every chunk ...")
  233. chat_mdl = LLMBundle(row["tenant_id"], LLMType.CHAT, llm_name=row["llm_id"], lang=row["language"])
  234. for d in docs:
  235. qst = question_proposal(chat_mdl, d["content_with_weight"], row["parser_config"]["auto_questions"])
  236. d["content_with_weight"] = f"Question: \n{qst}\n\nAnswer:\n" + d["content_with_weight"]
  237. qst = rag_tokenizer.tokenize(qst)
  238. if "content_ltks" in d:
  239. d["content_ltks"] += " " + qst
  240. if "content_sm_ltks" in d:
  241. d["content_sm_ltks"] += " " + rag_tokenizer.fine_grained_tokenize(qst)
  242. callback(msg="Question generation completed in {:.2f}s".format(timer() - st))
  243. return docs
  244. def init_kb(row, vector_size: int):
  245. idxnm = search.index_name(row["tenant_id"])
  246. return settings.docStoreConn.createIdx(idxnm, row["kb_id"], vector_size)
  247. def embedding(docs, mdl, parser_config=None, callback=None):
  248. if parser_config is None:
  249. parser_config = {}
  250. batch_size = 32
  251. tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [
  252. re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", d["content_with_weight"]) for d in docs]
  253. tk_count = 0
  254. if len(tts) == len(cnts):
  255. tts_ = np.array([])
  256. for i in range(0, len(tts), batch_size):
  257. vts, c = mdl.encode(tts[i: i + batch_size])
  258. if len(tts_) == 0:
  259. tts_ = vts
  260. else:
  261. tts_ = np.concatenate((tts_, vts), axis=0)
  262. tk_count += c
  263. callback(prog=0.6 + 0.1 * (i + 1) / len(tts), msg="")
  264. tts = tts_
  265. cnts_ = np.array([])
  266. for i in range(0, len(cnts), batch_size):
  267. vts, c = mdl.encode(cnts[i: i + batch_size])
  268. if len(cnts_) == 0:
  269. cnts_ = vts
  270. else:
  271. cnts_ = np.concatenate((cnts_, vts), axis=0)
  272. tk_count += c
  273. callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="")
  274. cnts = cnts_
  275. title_w = float(parser_config.get("filename_embd_weight", 0.1))
  276. vects = (title_w * tts + (1 - title_w) *
  277. cnts) if len(tts) == len(cnts) else cnts
  278. assert len(vects) == len(docs)
  279. vector_size = 0
  280. for i, d in enumerate(docs):
  281. v = vects[i].tolist()
  282. vector_size = len(v)
  283. d["q_%d_vec" % len(v)] = v
  284. return tk_count, vector_size
  285. def run_raptor(row, chat_mdl, embd_mdl, callback=None):
  286. vts, _ = embd_mdl.encode(["ok"])
  287. vector_size = len(vts[0])
  288. vctr_nm = "q_%d_vec" % vector_size
  289. chunks = []
  290. for d in settings.retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])],
  291. fields=["content_with_weight", vctr_nm]):
  292. chunks.append((d["content_with_weight"], np.array(d[vctr_nm])))
  293. raptor = Raptor(
  294. row["parser_config"]["raptor"].get("max_cluster", 64),
  295. chat_mdl,
  296. embd_mdl,
  297. row["parser_config"]["raptor"]["prompt"],
  298. row["parser_config"]["raptor"]["max_token"],
  299. row["parser_config"]["raptor"]["threshold"]
  300. )
  301. original_length = len(chunks)
  302. raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback)
  303. doc = {
  304. "doc_id": row["doc_id"],
  305. "kb_id": [str(row["kb_id"])],
  306. "docnm_kwd": row["name"],
  307. "title_tks": rag_tokenizer.tokenize(row["name"])
  308. }
  309. res = []
  310. tk_count = 0
  311. for content, vctr in chunks[original_length:]:
  312. d = copy.deepcopy(doc)
  313. md5 = hashlib.md5()
  314. md5.update((content + str(d["doc_id"])).encode("utf-8"))
  315. d["id"] = md5.hexdigest()
  316. d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
  317. d["create_timestamp_flt"] = datetime.now().timestamp()
  318. d[vctr_nm] = vctr.tolist()
  319. d["content_with_weight"] = content
  320. d["content_ltks"] = rag_tokenizer.tokenize(content)
  321. d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
  322. res.append(d)
  323. tk_count += num_tokens_from_string(content)
  324. return res, tk_count, vector_size
  325. def do_handle_task(r):
  326. callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
  327. try:
  328. embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING, llm_name=r["embd_id"], lang=r["language"])
  329. except Exception as e:
  330. callback(-1, msg=str(e))
  331. raise
  332. if r.get("task_type", "") == "raptor":
  333. try:
  334. chat_mdl = LLMBundle(r["tenant_id"], LLMType.CHAT, llm_name=r["llm_id"], lang=r["language"])
  335. cks, tk_count, vector_size = run_raptor(r, chat_mdl, embd_mdl, callback)
  336. except Exception as e:
  337. callback(-1, msg=str(e))
  338. raise
  339. else:
  340. st = timer()
  341. cks = build(r)
  342. logging.info("Build chunks({}): {}".format(r["name"], timer() - st))
  343. if cks is None:
  344. return
  345. if not cks:
  346. callback(1., "No chunk! Done!")
  347. return
  348. # TODO: exception handler
  349. ## set_progress(r["did"], -1, "ERROR: ")
  350. callback(
  351. msg="Finished slicing files ({} chunks in {:.2f}s). Start to embedding the content.".format(len(cks),
  352. timer() - st)
  353. )
  354. st = timer()
  355. try:
  356. tk_count, vector_size = embedding(cks, embd_mdl, r["parser_config"], callback)
  357. except Exception as e:
  358. callback(-1, "Embedding error:{}".format(str(e)))
  359. logging.exception("run_rembedding got exception")
  360. tk_count = 0
  361. raise
  362. logging.info("Embedding elapsed({}): {:.2f}".format(r["name"], timer() - st))
  363. callback(msg="Finished embedding (in {:.2f}s)! Start to build index!".format(timer() - st))
  364. # logging.info(f"task_executor init_kb index {search.index_name(r["tenant_id"])} embd_mdl {embd_mdl.llm_name} vector length {vector_size}")
  365. init_kb(r, vector_size)
  366. chunk_count = len(set([c["id"] for c in cks]))
  367. st = timer()
  368. es_r = ""
  369. es_bulk_size = 4
  370. for b in range(0, len(cks), es_bulk_size):
  371. es_r = settings.docStoreConn.insert(cks[b:b + es_bulk_size], search.index_name(r["tenant_id"]), r["kb_id"])
  372. if b % 128 == 0:
  373. callback(prog=0.8 + 0.1 * (b + 1) / len(cks), msg="")
  374. logging.info("Indexing elapsed({}): {:.2f}".format(r["name"], timer() - st))
  375. if es_r:
  376. callback(-1, "Insert chunk error, detail info please check log file. Please also check Elasticsearch/Infinity status!")
  377. settings.docStoreConn.delete({"doc_id": r["doc_id"]}, search.index_name(r["tenant_id"]), r["kb_id"])
  378. logging.error('Insert chunk error: ' + str(es_r))
  379. raise Exception('Insert chunk error: ' + str(es_r))
  380. if TaskService.do_cancel(r["id"]):
  381. settings.docStoreConn.delete({"doc_id": r["doc_id"]}, search.index_name(r["tenant_id"]), r["kb_id"])
  382. return
  383. callback(msg="Indexing elapsed in {:.2f}s.".format(timer() - st))
  384. callback(1., "Done!")
  385. DocumentService.increment_chunk_num(
  386. r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
  387. logging.info(
  388. "Chunk doc({}), token({}), chunks({}), elapsed:{:.2f}".format(
  389. r["id"], tk_count, len(cks), timer() - st))
  390. def handle_task():
  391. global PAYLOAD, mt_lock, DONE_TASKS, FAILED_TASKS, CURRENT_TASK
  392. task = collect()
  393. if task:
  394. try:
  395. logging.info(f"handle_task begin for task {json.dumps(task)}")
  396. with mt_lock:
  397. CURRENT_TASK = copy.deepcopy(task)
  398. do_handle_task(task)
  399. with mt_lock:
  400. DONE_TASKS += 1
  401. CURRENT_TASK = None
  402. logging.info(f"handle_task done for task {json.dumps(task)}")
  403. except Exception:
  404. with mt_lock:
  405. FAILED_TASKS += 1
  406. CURRENT_TASK = None
  407. logging.exception(f"handle_task got exception for task {json.dumps(task)}")
  408. if PAYLOAD:
  409. PAYLOAD.ack()
  410. PAYLOAD = None
  411. def report_status():
  412. global CONSUMER_NAME, BOOT_AT, PENDING_TASKS, LAG_TASKS, mt_lock, DONE_TASKS, FAILED_TASKS, CURRENT_TASK
  413. REDIS_CONN.sadd("TASKEXE", CONSUMER_NAME)
  414. while True:
  415. try:
  416. now = datetime.now()
  417. group_info = REDIS_CONN.queue_info(SVR_QUEUE_NAME, "rag_flow_svr_task_broker")
  418. if group_info is not None:
  419. PENDING_TASKS = int(group_info["pending"])
  420. LAG_TASKS = int(group_info["lag"])
  421. with mt_lock:
  422. heartbeat = json.dumps({
  423. "name": CONSUMER_NAME,
  424. "now": now.isoformat(),
  425. "boot_at": BOOT_AT,
  426. "pending": PENDING_TASKS,
  427. "lag": LAG_TASKS,
  428. "done": DONE_TASKS,
  429. "failed": FAILED_TASKS,
  430. "current": CURRENT_TASK,
  431. })
  432. REDIS_CONN.zadd(CONSUMER_NAME, heartbeat, now.timestamp())
  433. logging.info(f"{CONSUMER_NAME} reported heartbeat: {heartbeat}")
  434. expired = REDIS_CONN.zcount(CONSUMER_NAME, 0, now.timestamp() - 60 * 30)
  435. if expired > 0:
  436. REDIS_CONN.zpopmin(CONSUMER_NAME, expired)
  437. except Exception:
  438. logging.exception("report_status got exception")
  439. time.sleep(30)
  440. def main():
  441. settings.init_settings()
  442. background_thread = threading.Thread(target=report_status)
  443. background_thread.daemon = True
  444. background_thread.start()
  445. while True:
  446. handle_task()
  447. if __name__ == "__main__":
  448. main()