| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- # from beartype import BeartypeConf
- # from beartype.claw import beartype_all # <-- you didn't sign up for this
- # beartype_all(conf=BeartypeConf(violation_type=UserWarning)) # <-- emit warnings from all code
- import random
- import sys
- import threading
- import time
-
- from api.utils.api_utils import timeout, is_strong_enough
- from api.utils.log_utils import init_root_logger, get_project_base_directory
- from graphrag.general.index import run_graphrag
- from graphrag.utils import get_llm_cache, set_llm_cache, get_tags_from_cache, set_tags_to_cache
- from rag.prompts import keyword_extraction, question_proposal, content_tagging
-
- import logging
- import os
- from datetime import datetime
- import json
- import xxhash
- import copy
- import re
- from functools import partial
- from io import BytesIO
- from multiprocessing.context import TimeoutError
- from timeit import default_timer as timer
- import tracemalloc
- import signal
- import trio
- import exceptiongroup
- import faulthandler
-
- import numpy as np
- from peewee import DoesNotExist
-
- from api.db import LLMType, ParserType
- from api.db.services.document_service import DocumentService
- from api.db.services.llm_service import LLMBundle
- from api.db.services.task_service import TaskService, has_canceled
- from api.db.services.file2document_service import File2DocumentService
- from api import settings
- from api.versions import get_ragflow_version
- from api.db.db_models import close_connection
- from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one, audio, \
- email, tag
- from rag.nlp import search, rag_tokenizer
- from rag.raptor import RecursiveAbstractiveProcessing4TreeOrganizedRetrieval as Raptor
- from rag.settings import DOC_MAXIMUM_SIZE, DOC_BULK_SIZE, EMBEDDING_BATCH_SIZE, SVR_CONSUMER_GROUP_NAME, get_svr_queue_name, get_svr_queue_names, print_rag_settings, TAG_FLD, PAGERANK_FLD
- from rag.utils import num_tokens_from_string, truncate
- from rag.utils.redis_conn import REDIS_CONN, RedisDistributedLock
- from rag.utils.storage_factory import STORAGE_IMPL
- from graphrag.utils import chat_limiter
-
- BATCH_SIZE = 64
-
- FACTORY = {
- "general": naive,
- ParserType.NAIVE.value: naive,
- ParserType.PAPER.value: paper,
- ParserType.BOOK.value: book,
- ParserType.PRESENTATION.value: presentation,
- ParserType.MANUAL.value: manual,
- ParserType.LAWS.value: laws,
- ParserType.QA.value: qa,
- ParserType.TABLE.value: table,
- ParserType.RESUME.value: resume,
- ParserType.PICTURE.value: picture,
- ParserType.ONE.value: one,
- ParserType.AUDIO.value: audio,
- ParserType.EMAIL.value: email,
- ParserType.KG.value: naive,
- ParserType.TAG.value: tag
- }
-
- UNACKED_ITERATOR = None
-
- CONSUMER_NO = "0" if len(sys.argv) < 2 else sys.argv[1]
- CONSUMER_NAME = "task_executor_" + CONSUMER_NO
- BOOT_AT = datetime.now().astimezone().isoformat(timespec="milliseconds")
- PENDING_TASKS = 0
- LAG_TASKS = 0
- DONE_TASKS = 0
- FAILED_TASKS = 0
-
- CURRENT_TASKS = {}
-
- MAX_CONCURRENT_TASKS = int(os.environ.get('MAX_CONCURRENT_TASKS', "5"))
- MAX_CONCURRENT_CHUNK_BUILDERS = int(os.environ.get('MAX_CONCURRENT_CHUNK_BUILDERS', "1"))
- MAX_CONCURRENT_MINIO = int(os.environ.get('MAX_CONCURRENT_MINIO', '10'))
- task_limiter = trio.Semaphore(MAX_CONCURRENT_TASKS)
- chunk_limiter = trio.CapacityLimiter(MAX_CONCURRENT_CHUNK_BUILDERS)
- minio_limiter = trio.CapacityLimiter(MAX_CONCURRENT_MINIO)
- kg_limiter = trio.CapacityLimiter(2)
- WORKER_HEARTBEAT_TIMEOUT = int(os.environ.get('WORKER_HEARTBEAT_TIMEOUT', '120'))
- stop_event = threading.Event()
-
-
- def signal_handler(sig, frame):
- logging.info("Received interrupt signal, shutting down...")
- stop_event.set()
- time.sleep(1)
- sys.exit(0)
-
-
- # SIGUSR1 handler: start tracemalloc and take snapshot
- def start_tracemalloc_and_snapshot(signum, frame):
- if not tracemalloc.is_tracing():
- logging.info("start tracemalloc")
- tracemalloc.start()
- else:
- logging.info("tracemalloc is already running")
-
- timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
- snapshot_file = f"snapshot_{timestamp}.trace"
- snapshot_file = os.path.abspath(os.path.join(get_project_base_directory(), "logs", f"{os.getpid()}_snapshot_{timestamp}.trace"))
-
- snapshot = tracemalloc.take_snapshot()
- snapshot.dump(snapshot_file)
- current, peak = tracemalloc.get_traced_memory()
- if sys.platform == "win32":
- import psutil
- process = psutil.Process()
- max_rss = process.memory_info().rss / 1024
- else:
- import resource
- max_rss = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
- logging.info(f"taken snapshot {snapshot_file}. max RSS={max_rss / 1000:.2f} MB, current memory usage: {current / 10**6:.2f} MB, Peak memory usage: {peak / 10**6:.2f} MB")
-
- # SIGUSR2 handler: stop tracemalloc
- def stop_tracemalloc(signum, frame):
- if tracemalloc.is_tracing():
- logging.info("stop tracemalloc")
- tracemalloc.stop()
- else:
- logging.info("tracemalloc not running")
-
- class TaskCanceledException(Exception):
- def __init__(self, msg):
- self.msg = msg
-
-
- def set_progress(task_id, from_page=0, to_page=-1, prog=None, msg="Processing..."):
- try:
- if prog is not None and prog < 0:
- msg = "[ERROR]" + msg
- cancel = has_canceled(task_id)
-
- if cancel:
- msg += " [Canceled]"
- prog = -1
-
- if to_page > 0:
- if msg:
- if from_page < to_page:
- msg = f"Page({from_page + 1}~{to_page + 1}): " + msg
- if msg:
- msg = datetime.now().strftime("%H:%M:%S") + " " + msg
- d = {"progress_msg": msg}
- if prog is not None:
- d["progress"] = prog
-
- TaskService.update_progress(task_id, d)
-
- close_connection()
- if cancel:
- raise TaskCanceledException(msg)
- logging.info(f"set_progress({task_id}), progress: {prog}, progress_msg: {msg}")
- except DoesNotExist:
- logging.warning(f"set_progress({task_id}) got exception DoesNotExist")
- except Exception:
- logging.exception(f"set_progress({task_id}), progress: {prog}, progress_msg: {msg}, got exception")
-
-
- async def collect():
- global CONSUMER_NAME, DONE_TASKS, FAILED_TASKS
- global UNACKED_ITERATOR
-
- svr_queue_names = get_svr_queue_names()
- try:
- if not UNACKED_ITERATOR:
- UNACKED_ITERATOR = REDIS_CONN.get_unacked_iterator(svr_queue_names, SVR_CONSUMER_GROUP_NAME, CONSUMER_NAME)
- try:
- redis_msg = next(UNACKED_ITERATOR)
- except StopIteration:
- for svr_queue_name in svr_queue_names:
- redis_msg = REDIS_CONN.queue_consumer(svr_queue_name, SVR_CONSUMER_GROUP_NAME, CONSUMER_NAME)
- if redis_msg:
- break
- except Exception:
- logging.exception("collect got exception")
- return None, None
-
- if not redis_msg:
- return None, None
- msg = redis_msg.get_message()
- if not msg:
- logging.error(f"collect got empty message of {redis_msg.get_msg_id()}")
- redis_msg.ack()
- return None, None
-
- canceled = False
- task = TaskService.get_task(msg["id"])
- if task:
- canceled = has_canceled(task["id"])
- if not task or canceled:
- state = "is unknown" if not task else "has been cancelled"
- FAILED_TASKS += 1
- logging.warning(f"collect task {msg['id']} {state}")
- redis_msg.ack()
- return None, None
- task["task_type"] = msg.get("task_type", "")
- return redis_msg, task
-
-
- async def get_storage_binary(bucket, name):
- return await trio.to_thread.run_sync(lambda: STORAGE_IMPL.get(bucket, name))
-
-
- @timeout(60*40, 1)
- async def build_chunks(task, progress_callback):
- if task["size"] > DOC_MAXIMUM_SIZE:
- set_progress(task["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
- (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
- return []
-
- chunker = FACTORY[task["parser_id"].lower()]
- try:
- st = timer()
- bucket, name = File2DocumentService.get_storage_address(doc_id=task["doc_id"])
- binary = await get_storage_binary(bucket, name)
- logging.info("From minio({}) {}/{}".format(timer() - st, task["location"], task["name"]))
- except TimeoutError:
- progress_callback(-1, "Internal server error: Fetch file from minio timeout. Could you try it again.")
- logging.exception(
- "Minio {}/{} got timeout: Fetch file from minio timeout.".format(task["location"], task["name"]))
- raise
- except Exception as e:
- if re.search("(No such file|not found)", str(e)):
- progress_callback(-1, "Can not find file <%s> from minio. Could you try it again?" % task["name"])
- else:
- progress_callback(-1, "Get file from minio: %s" % str(e).replace("'", ""))
- logging.exception("Chunking {}/{} got exception".format(task["location"], task["name"]))
- raise
-
- try:
- async with chunk_limiter:
- cks = await trio.to_thread.run_sync(lambda: chunker.chunk(task["name"], binary=binary, from_page=task["from_page"],
- to_page=task["to_page"], lang=task["language"], callback=progress_callback,
- kb_id=task["kb_id"], parser_config=task["parser_config"], tenant_id=task["tenant_id"]))
- logging.info("Chunking({}) {}/{} done".format(timer() - st, task["location"], task["name"]))
- except TaskCanceledException:
- raise
- except Exception as e:
- progress_callback(-1, "Internal server error while chunking: %s" % str(e).replace("'", ""))
- logging.exception("Chunking {}/{} got exception".format(task["location"], task["name"]))
- raise
-
- docs = []
- doc = {
- "doc_id": task["doc_id"],
- "kb_id": str(task["kb_id"])
- }
- if task["pagerank"]:
- doc[PAGERANK_FLD] = int(task["pagerank"])
- st = timer()
-
- @timeout(60)
- async def upload_to_minio(document, chunk):
- try:
- d = copy.deepcopy(document)
- d.update(chunk)
- d["id"] = xxhash.xxh64((chunk["content_with_weight"] + str(d["doc_id"])).encode("utf-8")).hexdigest()
- d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
- d["create_timestamp_flt"] = datetime.now().timestamp()
- if not d.get("image"):
- _ = d.pop("image", None)
- d["img_id"] = ""
- docs.append(d)
- return
-
- output_buffer = BytesIO()
- try:
- if isinstance(d["image"], bytes):
- output_buffer.write(d["image"])
- output_buffer.seek(0)
- else:
- # If the image is in RGBA mode, convert it to RGB mode before saving it in JPEG format.
- if d["image"].mode in ("RGBA", "P"):
- converted_image = d["image"].convert("RGB")
- d["image"].close() # Close original image
- d["image"] = converted_image
- d["image"].save(output_buffer, format='JPEG')
-
- async with minio_limiter:
- await trio.to_thread.run_sync(lambda: STORAGE_IMPL.put(task["kb_id"], d["id"], output_buffer.getvalue()))
- d["img_id"] = "{}-{}".format(task["kb_id"], d["id"])
- if not isinstance(d["image"], bytes):
- d["image"].close()
- del d["image"] # Remove image reference
- docs.append(d)
- finally:
- output_buffer.close() # Ensure BytesIO is always closed
- except Exception:
- logging.exception(
- "Saving image of chunk {}/{}/{} got exception".format(task["location"], task["name"], d["id"]))
- raise
-
- async with trio.open_nursery() as nursery:
- for ck in cks:
- nursery.start_soon(upload_to_minio, doc, ck)
-
- el = timer() - st
- logging.info("MINIO PUT({}) cost {:.3f} s".format(task["name"], el))
-
- if task["parser_config"].get("auto_keywords", 0):
- st = timer()
- progress_callback(msg="Start to generate keywords for every chunk ...")
- chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"])
-
- async def doc_keyword_extraction(chat_mdl, d, topn):
- cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], "keywords", {"topn": topn})
- if not cached:
- async with chat_limiter:
- cached = await trio.to_thread.run_sync(lambda: keyword_extraction(chat_mdl, d["content_with_weight"], topn))
- set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, "keywords", {"topn": topn})
- if cached:
- d["important_kwd"] = cached.split(",")
- d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"]))
- return
- async with trio.open_nursery() as nursery:
- for d in docs:
- nursery.start_soon(doc_keyword_extraction, chat_mdl, d, task["parser_config"]["auto_keywords"])
- progress_callback(msg="Keywords generation {} chunks completed in {:.2f}s".format(len(docs), timer() - st))
-
- if task["parser_config"].get("auto_questions", 0):
- st = timer()
- progress_callback(msg="Start to generate questions for every chunk ...")
- chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"])
-
- async def doc_question_proposal(chat_mdl, d, topn):
- cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], "question", {"topn": topn})
- if not cached:
- async with chat_limiter:
- cached = await trio.to_thread.run_sync(lambda: question_proposal(chat_mdl, d["content_with_weight"], topn))
- set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, "question", {"topn": topn})
- if cached:
- d["question_kwd"] = cached.split("\n")
- d["question_tks"] = rag_tokenizer.tokenize("\n".join(d["question_kwd"]))
- async with trio.open_nursery() as nursery:
- for d in docs:
- nursery.start_soon(doc_question_proposal, chat_mdl, d, task["parser_config"]["auto_questions"])
- progress_callback(msg="Question generation {} chunks completed in {:.2f}s".format(len(docs), timer() - st))
-
- if task["kb_parser_config"].get("tag_kb_ids", []):
- progress_callback(msg="Start to tag for every chunk ...")
- kb_ids = task["kb_parser_config"]["tag_kb_ids"]
- tenant_id = task["tenant_id"]
- topn_tags = task["kb_parser_config"].get("topn_tags", 3)
- S = 1000
- st = timer()
- examples = []
- all_tags = get_tags_from_cache(kb_ids)
- if not all_tags:
- all_tags = settings.retrievaler.all_tags_in_portion(tenant_id, kb_ids, S)
- set_tags_to_cache(kb_ids, all_tags)
- else:
- all_tags = json.loads(all_tags)
-
- chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"])
-
- docs_to_tag = []
- for d in docs:
- task_canceled = has_canceled(task["id"])
- if task_canceled:
- progress_callback(-1, msg="Task has been canceled.")
- return
- if settings.retrievaler.tag_content(tenant_id, kb_ids, d, all_tags, topn_tags=topn_tags, S=S) and len(d[TAG_FLD]) > 0:
- examples.append({"content": d["content_with_weight"], TAG_FLD: d[TAG_FLD]})
- else:
- docs_to_tag.append(d)
-
- async def doc_content_tagging(chat_mdl, d, topn_tags):
- cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], all_tags, {"topn": topn_tags})
- if not cached:
- picked_examples = random.choices(examples, k=2) if len(examples)>2 else examples
- if not picked_examples:
- picked_examples.append({"content": "This is an example", TAG_FLD: {'example': 1}})
- async with chat_limiter:
- cached = await trio.to_thread.run_sync(lambda: content_tagging(chat_mdl, d["content_with_weight"], all_tags, picked_examples, topn=topn_tags))
- if cached:
- cached = json.dumps(cached)
- if cached:
- set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, all_tags, {"topn": topn_tags})
- d[TAG_FLD] = json.loads(cached)
- async with trio.open_nursery() as nursery:
- for d in docs_to_tag:
- nursery.start_soon(doc_content_tagging, chat_mdl, d, topn_tags)
- progress_callback(msg="Tagging {} chunks completed in {:.2f}s".format(len(docs), timer() - st))
-
- return docs
-
-
- def init_kb(row, vector_size: int):
- idxnm = search.index_name(row["tenant_id"])
- return settings.docStoreConn.createIdx(idxnm, row.get("kb_id", ""), vector_size)
-
-
- @timeout(60*20)
- async def embedding(docs, mdl, parser_config=None, callback=None):
- if parser_config is None:
- parser_config = {}
- tts, cnts = [], []
- for d in docs:
- tts.append(d.get("docnm_kwd", "Title"))
- c = "\n".join(d.get("question_kwd", []))
- if not c:
- c = d["content_with_weight"]
- c = re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", c)
- if not c:
- c = "None"
- cnts.append(c)
-
- tk_count = 0
- if len(tts) == len(cnts):
- vts, c = await trio.to_thread.run_sync(lambda: mdl.encode(tts[0: 1]))
- tts = np.concatenate([vts for _ in range(len(tts))], axis=0)
- tk_count += c
-
- cnts_ = np.array([])
- for i in range(0, len(cnts), EMBEDDING_BATCH_SIZE):
- vts, c = await trio.to_thread.run_sync(lambda: mdl.encode([truncate(c, mdl.max_length-10) for c in cnts[i: i + EMBEDDING_BATCH_SIZE]]))
- if len(cnts_) == 0:
- cnts_ = vts
- else:
- cnts_ = np.concatenate((cnts_, vts), axis=0)
- tk_count += c
- callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="")
- cnts = cnts_
- filename_embd_weight = parser_config.get("filename_embd_weight", 0.1) # due to the db support none value
- if not filename_embd_weight:
- filename_embd_weight = 0.1
- title_w = float(filename_embd_weight)
- vects = (title_w * tts + (1 - title_w) *
- cnts) if len(tts) == len(cnts) else cnts
-
- assert len(vects) == len(docs)
- vector_size = 0
- for i, d in enumerate(docs):
- v = vects[i].tolist()
- vector_size = len(v)
- d["q_%d_vec" % len(v)] = v
- return tk_count, vector_size
-
-
- @timeout(3600)
- async def run_raptor(row, chat_mdl, embd_mdl, vector_size, callback=None):
- # Pressure test for GraphRAG task
- await is_strong_enough(chat_mdl, embd_mdl)
- chunks = []
- vctr_nm = "q_%d_vec"%vector_size
- for d in settings.retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])],
- fields=["content_with_weight", vctr_nm]):
- chunks.append((d["content_with_weight"], np.array(d[vctr_nm])))
-
- raptor = Raptor(
- row["parser_config"]["raptor"].get("max_cluster", 64),
- chat_mdl,
- embd_mdl,
- row["parser_config"]["raptor"]["prompt"],
- row["parser_config"]["raptor"]["max_token"],
- row["parser_config"]["raptor"]["threshold"]
- )
- original_length = len(chunks)
- chunks = await raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback)
- doc = {
- "doc_id": row["doc_id"],
- "kb_id": [str(row["kb_id"])],
- "docnm_kwd": row["name"],
- "title_tks": rag_tokenizer.tokenize(row["name"])
- }
- if row["pagerank"]:
- doc[PAGERANK_FLD] = int(row["pagerank"])
- res = []
- tk_count = 0
- for content, vctr in chunks[original_length:]:
- d = copy.deepcopy(doc)
- d["id"] = xxhash.xxh64((content + str(d["doc_id"])).encode("utf-8")).hexdigest()
- d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
- d["create_timestamp_flt"] = datetime.now().timestamp()
- d[vctr_nm] = vctr.tolist()
- d["content_with_weight"] = content
- d["content_ltks"] = rag_tokenizer.tokenize(content)
- d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
- res.append(d)
- tk_count += num_tokens_from_string(content)
- return res, tk_count
-
-
- @timeout(60*60, 1)
- async def do_handle_task(task):
- task_id = task["id"]
- task_from_page = task["from_page"]
- task_to_page = task["to_page"]
- task_tenant_id = task["tenant_id"]
- task_embedding_id = task["embd_id"]
- task_language = task["language"]
- task_llm_id = task["llm_id"]
- task_dataset_id = task["kb_id"]
- task_doc_id = task["doc_id"]
- task_document_name = task["name"]
- task_parser_config = task["parser_config"]
- task_start_ts = timer()
-
- # prepare the progress callback function
- progress_callback = partial(set_progress, task_id, task_from_page, task_to_page)
-
- # FIXME: workaround, Infinity doesn't support table parsing method, this check is to notify user
- lower_case_doc_engine = settings.DOC_ENGINE.lower()
- if lower_case_doc_engine == 'infinity' and task['parser_id'].lower() == 'table':
- error_message = "Table parsing method is not supported by Infinity, please use other parsing methods or use Elasticsearch as the document engine."
- progress_callback(-1, msg=error_message)
- raise Exception(error_message)
-
- task_canceled = has_canceled(task_id)
- if task_canceled:
- progress_callback(-1, msg="Task has been canceled.")
- return
-
- try:
- # bind embedding model
- embedding_model = LLMBundle(task_tenant_id, LLMType.EMBEDDING, llm_name=task_embedding_id, lang=task_language)
- await is_strong_enough(None, embedding_model)
- vts, _ = embedding_model.encode(["ok"])
- vector_size = len(vts[0])
- except Exception as e:
- error_message = f'Fail to bind embedding model: {str(e)}'
- progress_callback(-1, msg=error_message)
- logging.exception(error_message)
- raise
-
- init_kb(task, vector_size)
-
- # Either using RAPTOR or Standard chunking methods
- if task.get("task_type", "") == "raptor":
- # bind LLM for raptor
- chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
- await is_strong_enough(chat_model, None)
- # run RAPTOR
- async with kg_limiter:
- chunks, token_count = await run_raptor(task, chat_model, embedding_model, vector_size, progress_callback)
- # Either using graphrag or Standard chunking methods
- elif task.get("task_type", "") == "graphrag":
- if not task_parser_config.get("graphrag", {}).get("use_graphrag", False):
- progress_callback(prog=-1.0, msg="Internal configuration error.")
- return
- graphrag_conf = task["kb_parser_config"].get("graphrag", {})
- start_ts = timer()
- chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
- await is_strong_enough(chat_model, None)
- with_resolution = graphrag_conf.get("resolution", False)
- with_community = graphrag_conf.get("community", False)
- async with kg_limiter:
- await run_graphrag(task, task_language, with_resolution, with_community, chat_model, embedding_model, progress_callback)
- progress_callback(prog=1.0, msg="Knowledge Graph done ({:.2f}s)".format(timer() - start_ts))
- return
- else:
- # Standard chunking methods
- start_ts = timer()
- chunks = await build_chunks(task, progress_callback)
- logging.info("Build document {}: {:.2f}s".format(task_document_name, timer() - start_ts))
- if not chunks:
- progress_callback(1., msg=f"No chunk built from {task_document_name}")
- return
- # TODO: exception handler
- ## set_progress(task["did"], -1, "ERROR: ")
- progress_callback(msg="Generate {} chunks".format(len(chunks)))
- start_ts = timer()
- try:
- token_count, vector_size = await embedding(chunks, embedding_model, task_parser_config, progress_callback)
- except Exception as e:
- error_message = "Generate embedding error:{}".format(str(e))
- progress_callback(-1, error_message)
- logging.exception(error_message)
- token_count = 0
- raise
- progress_message = "Embedding chunks ({:.2f}s)".format(timer() - start_ts)
- logging.info(progress_message)
- progress_callback(msg=progress_message)
-
- chunk_count = len(set([chunk["id"] for chunk in chunks]))
- start_ts = timer()
- doc_store_result = ""
-
- async def delete_image(kb_id, chunk_id):
- try:
- async with minio_limiter:
- STORAGE_IMPL.delete(kb_id, chunk_id)
- except Exception:
- logging.exception(
- "Deleting image of chunk {}/{}/{} got exception".format(task["location"], task["name"], chunk_id))
- raise
-
- for b in range(0, len(chunks), DOC_BULK_SIZE):
- doc_store_result = await trio.to_thread.run_sync(lambda: settings.docStoreConn.insert(chunks[b:b + DOC_BULK_SIZE], search.index_name(task_tenant_id), task_dataset_id))
- task_canceled = has_canceled(task_id)
- if task_canceled:
- progress_callback(-1, msg="Task has been canceled.")
- return
- if b % 128 == 0:
- progress_callback(prog=0.8 + 0.1 * (b + 1) / len(chunks), msg="")
- if doc_store_result:
- error_message = f"Insert chunk error: {doc_store_result}, please check log file and Elasticsearch/Infinity status!"
- progress_callback(-1, msg=error_message)
- raise Exception(error_message)
- chunk_ids = [chunk["id"] for chunk in chunks[:b + DOC_BULK_SIZE]]
- chunk_ids_str = " ".join(chunk_ids)
- try:
- TaskService.update_chunk_ids(task["id"], chunk_ids_str)
- except DoesNotExist:
- logging.warning(f"do_handle_task update_chunk_ids failed since task {task['id']} is unknown.")
- doc_store_result = await trio.to_thread.run_sync(lambda: settings.docStoreConn.delete({"id": chunk_ids}, search.index_name(task_tenant_id), task_dataset_id))
- async with trio.open_nursery() as nursery:
- for chunk_id in chunk_ids:
- nursery.start_soon(delete_image, task_dataset_id, chunk_id)
- progress_callback(-1, msg=f"Chunk updates failed since task {task['id']} is unknown.")
- return
-
- logging.info("Indexing doc({}), page({}-{}), chunks({}), elapsed: {:.2f}".format(task_document_name, task_from_page,
- task_to_page, len(chunks),
- timer() - start_ts))
-
- DocumentService.increment_chunk_num(task_doc_id, task_dataset_id, token_count, chunk_count, 0)
-
- time_cost = timer() - start_ts
- task_time_cost = timer() - task_start_ts
- progress_callback(prog=1.0, msg="Indexing done ({:.2f}s). Task done ({:.2f}s)".format(time_cost, task_time_cost))
- logging.info(
- "Chunk doc({}), page({}-{}), chunks({}), token({}), elapsed:{:.2f}".format(task_document_name, task_from_page,
- task_to_page, len(chunks),
- token_count, task_time_cost))
-
-
- async def handle_task():
- global DONE_TASKS, FAILED_TASKS
- redis_msg, task = await collect()
- if not task:
- await trio.sleep(5)
- return
- try:
- logging.info(f"handle_task begin for task {json.dumps(task)}")
- CURRENT_TASKS[task["id"]] = copy.deepcopy(task)
- await do_handle_task(task)
- DONE_TASKS += 1
- CURRENT_TASKS.pop(task["id"], None)
- logging.info(f"handle_task done for task {json.dumps(task)}")
- except Exception as e:
- FAILED_TASKS += 1
- CURRENT_TASKS.pop(task["id"], None)
- try:
- err_msg = str(e)
- while isinstance(e, exceptiongroup.ExceptionGroup):
- e = e.exceptions[0]
- err_msg += ' -- ' + str(e)
- set_progress(task["id"], prog=-1, msg=f"[Exception]: {err_msg}")
- except Exception:
- pass
- logging.exception(f"handle_task got exception for task {json.dumps(task)}")
- redis_msg.ack()
-
-
- async def report_status():
- global CONSUMER_NAME, BOOT_AT, PENDING_TASKS, LAG_TASKS, DONE_TASKS, FAILED_TASKS
- REDIS_CONN.sadd("TASKEXE", CONSUMER_NAME)
- redis_lock = RedisDistributedLock("clean_task_executor", lock_value=CONSUMER_NAME, timeout=60)
- while True:
- try:
- now = datetime.now()
- group_info = REDIS_CONN.queue_info(get_svr_queue_name(0), SVR_CONSUMER_GROUP_NAME)
- if group_info is not None:
- PENDING_TASKS = int(group_info.get("pending", 0))
- LAG_TASKS = int(group_info.get("lag", 0))
-
- current = copy.deepcopy(CURRENT_TASKS)
- heartbeat = json.dumps({
- "name": CONSUMER_NAME,
- "now": now.astimezone().isoformat(timespec="milliseconds"),
- "boot_at": BOOT_AT,
- "pending": PENDING_TASKS,
- "lag": LAG_TASKS,
- "done": DONE_TASKS,
- "failed": FAILED_TASKS,
- "current": current,
- })
- REDIS_CONN.zadd(CONSUMER_NAME, heartbeat, now.timestamp())
- logging.info(f"{CONSUMER_NAME} reported heartbeat: {heartbeat}")
-
- expired = REDIS_CONN.zcount(CONSUMER_NAME, 0, now.timestamp() - 60 * 30)
- if expired > 0:
- REDIS_CONN.zpopmin(CONSUMER_NAME, expired)
-
- # clean task executor
- if redis_lock.acquire():
- task_executors = REDIS_CONN.smembers("TASKEXE")
- for consumer_name in task_executors:
- if consumer_name == CONSUMER_NAME:
- continue
- expired = REDIS_CONN.zcount(
- consumer_name, now.timestamp() - WORKER_HEARTBEAT_TIMEOUT, now.timestamp() + 10
- )
- if expired == 0:
- logging.info(f"{consumer_name} expired, removed")
- REDIS_CONN.srem("TASKEXE", consumer_name)
- REDIS_CONN.delete(consumer_name)
- except Exception:
- logging.exception("report_status got exception")
- finally:
- redis_lock.release()
- await trio.sleep(30)
-
-
- async def task_manager():
- try:
- await handle_task()
- finally:
- task_limiter.release()
-
-
- async def main():
- logging.info(r"""
- ______ __ ______ __
- /_ __/___ ______/ /__ / ____/ _____ _______ __/ /_____ _____
- / / / __ `/ ___/ //_/ / __/ | |/_/ _ \/ ___/ / / / __/ __ \/ ___/
- / / / /_/ (__ ) ,< / /____> </ __/ /__/ /_/ / /_/ /_/ / /
- /_/ \__,_/____/_/|_| /_____/_/|_|\___/\___/\__,_/\__/\____/_/
- """)
- logging.info(f'TaskExecutor: RAGFlow version: {get_ragflow_version()}')
- settings.init_settings()
- print_rag_settings()
- if sys.platform != "win32":
- signal.signal(signal.SIGUSR1, start_tracemalloc_and_snapshot)
- signal.signal(signal.SIGUSR2, stop_tracemalloc)
- TRACE_MALLOC_ENABLED = int(os.environ.get('TRACE_MALLOC_ENABLED', "0"))
- if TRACE_MALLOC_ENABLED:
- start_tracemalloc_and_snapshot(None, None)
-
- signal.signal(signal.SIGINT, signal_handler)
- signal.signal(signal.SIGTERM, signal_handler)
-
- async with trio.open_nursery() as nursery:
- nursery.start_soon(report_status)
- while not stop_event.is_set():
- await task_limiter.acquire()
- nursery.start_soon(task_manager)
- logging.error("BUG!!! You should not reach here!!!")
-
- if __name__ == "__main__":
- faulthandler.enable()
- init_root_logger(CONSUMER_NAME)
- trio.run(main)
|