| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321 | 
							- # -*- coding: utf-8 -*-
 - import json
 - import re
 - from elasticsearch_dsl import Q, Search, A
 - from typing import List, Optional, Dict, Union
 - from dataclasses import dataclass
 - 
 - from rag.settings import es_logger
 - from rag.utils import rmSpace
 - from rag.nlp import huqie, query
 - import numpy as np
 - 
 - 
 - def index_name(uid): return f"ragflow_{uid}"
 - 
 - 
 - class Dealer:
 -     def __init__(self, es):
 -         self.qryr = query.EsQueryer(es)
 -         self.qryr.flds = [
 -             "title_tks^10",
 -             "title_sm_tks^5",
 -             "important_kwd^30",
 -             "important_tks^20",
 -             "content_ltks^2",
 -             "content_sm_ltks"]
 -         self.es = es
 - 
 -     @dataclass
 -     class SearchResult:
 -         total: int
 -         ids: List[str]
 -         query_vector: List[float] = None
 -         field: Optional[Dict] = None
 -         highlight: Optional[Dict] = None
 -         aggregation: Union[List, Dict, None] = None
 -         keywords: Optional[List[str]] = None
 -         group_docs: List[List] = None
 - 
 -     def _vector(self, txt, emb_mdl, sim=0.8, topk=10):
 -         qv, c = emb_mdl.encode_queries(txt)
 -         return {
 -             "field": "q_%d_vec" % len(qv),
 -             "k": topk,
 -             "similarity": sim,
 -             "num_candidates": topk * 2,
 -             "query_vector": qv
 -         }
 - 
 -     def search(self, req, idxnm, emb_mdl=None):
 -         qst = req.get("question", "")
 -         bqry, keywords = self.qryr.question(qst)
 -         if req.get("kb_ids"):
 -             bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
 -         if req.get("doc_ids"):
 -             bqry.filter.append(Q("terms", doc_id=req["doc_ids"]))
 -         if "available_int" in req:
 -             if req["available_int"] == 0:
 -                 bqry.filter.append(Q("range", available_int={"lt": 1}))
 -             else:
 -                 bqry.filter.append(
 -                     Q("bool", must_not=Q("range", available_int={"lt": 1})))
 -         bqry.boost = 0.05
 - 
 -         s = Search()
 -         pg = int(req.get("page", 1)) - 1
 -         ps = int(req.get("size", 1000))
 -         src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id",
 -                                  "image_id", "doc_id", "q_512_vec", "q_768_vec",
 -                                  "q_1024_vec", "q_1536_vec", "available_int", "content_with_weight"])
 - 
 -         s = s.query(bqry)[pg * ps:(pg + 1) * ps]
 -         s = s.highlight("content_ltks")
 -         s = s.highlight("title_ltks")
 -         if not qst:
 -             s = s.sort(
 -                 {"create_time": {"order": "desc", "unmapped_type": "date"}},
 -                 {"create_timestamp_flt": {"order": "desc", "unmapped_type": "float"}}
 -             )
 - 
 -         if qst:
 -             s = s.highlight_options(
 -                 fragment_size=120,
 -                 number_of_fragments=5,
 -                 boundary_scanner_locale="zh-CN",
 -                 boundary_scanner="SENTENCE",
 -                 boundary_chars=",./;:\\!(),。?:!……()——、"
 -             )
 -         s = s.to_dict()
 -         q_vec = []
 -         if req.get("vector"):
 -             assert emb_mdl, "No embedding model selected"
 -             s["knn"] = self._vector(
 -                 qst, emb_mdl, req.get(
 -                     "similarity", 0.4), ps)
 -             s["knn"]["filter"] = bqry.to_dict()
 -             if "highlight" in s:
 -                 del s["highlight"]
 -             q_vec = s["knn"]["query_vector"]
 -         es_logger.info("【Q】: {}".format(json.dumps(s)))
 -         res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
 -         es_logger.info("TOTAL: {}".format(self.es.getTotal(res)))
 -         if self.es.getTotal(res) == 0 and "knn" in s:
 -             bqry, _ = self.qryr.question(qst, min_match="10%")
 -             if req.get("kb_ids"):
 -                 bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
 -             s["query"] = bqry.to_dict()
 -             s["knn"]["filter"] = bqry.to_dict()
 -             s["knn"]["similarity"] = 0.7
 -             res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
 - 
 -         kwds = set([])
 -         for k in keywords:
 -             kwds.add(k)
 -             for kk in huqie.qieqie(k).split(" "):
 -                 if len(kk) < 2:
 -                     continue
 -                 if kk in kwds:
 -                     continue
 -                 kwds.add(kk)
 - 
 -         aggs = self.getAggregation(res, "docnm_kwd")
 - 
 -         return self.SearchResult(
 -             total=self.es.getTotal(res),
 -             ids=self.es.getDocIds(res),
 -             query_vector=q_vec,
 -             aggregation=aggs,
 -             highlight=self.getHighlight(res),
 -             field=self.getFields(res, src),
 -             keywords=list(kwds)
 -         )
 - 
 -     def getAggregation(self, res, g):
 -         if not "aggregations" in res or "aggs_" + g not in res["aggregations"]:
 -             return
 -         bkts = res["aggregations"]["aggs_" + g]["buckets"]
 -         return [(b["key"], b["doc_count"]) for b in bkts]
 - 
 -     def getHighlight(self, res):
 -         def rmspace(line):
 -             eng = set(list("qwertyuioplkjhgfdsazxcvbnm"))
 -             r = []
 -             for t in line.split(" "):
 -                 if not t:
 -                     continue
 -                 if len(r) > 0 and len(
 -                         t) > 0 and r[-1][-1] in eng and t[0] in eng:
 -                     r.append(" ")
 -                 r.append(t)
 -             r = "".join(r)
 -             return r
 - 
 -         ans = {}
 -         for d in res["hits"]["hits"]:
 -             hlts = d.get("highlight")
 -             if not hlts:
 -                 continue
 -             ans[d["_id"]] = "".join([a for a in list(hlts.items())[0][1]])
 -         return ans
 - 
 -     def getFields(self, sres, flds):
 -         res = {}
 -         if not flds:
 -             return {}
 -         for d in self.es.getSource(sres):
 -             m = {n: d.get(n) for n in flds if d.get(n) is not None}
 -             for n, v in m.items():
 -                 if isinstance(v, type([])):
 -                     m[n] = "\t".join([str(vv) for vv in v])
 -                     continue
 -                 if not isinstance(v, type("")):
 -                     m[n] = str(m[n])
 -                 m[n] = rmSpace(m[n])
 - 
 -             if m:
 -                 res[d["id"]] = m
 -         return res
 - 
 -     @staticmethod
 -     def trans2floats(txt):
 -         return [float(t) for t in txt.split("\t")]
 - 
 -     def insert_citations(self, answer, chunks, chunk_v,
 -                          embd_mdl, tkweight=0.3, vtweight=0.7):
 -         pieces = re.split(r"([;。?!!\n]|[a-z][.?;!][ \n])", answer)
 -         for i in range(1, len(pieces)):
 -             if re.match(r"[a-z][.?;!][ \n]", pieces[i]):
 -                 pieces[i - 1] += pieces[i][0]
 -                 pieces[i] = pieces[i][1:]
 -         idx = []
 -         pieces_ = []
 -         for i, t in enumerate(pieces):
 -             if len(t) < 5:
 -                 continue
 -             idx.append(i)
 -             pieces_.append(t)
 -         es_logger.info("{} => {}".format(answer, pieces_))
 -         if not pieces_:
 -             return answer
 - 
 -         ans_v, _ = embd_mdl.encode(pieces_)
 -         assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
 -             len(ans_v[0]), len(chunk_v[0]))
 - 
 -         chunks_tks = [huqie.qie(ck).split(" ") for ck in chunks]
 -         cites = {}
 -         for i, a in enumerate(pieces_):
 -             sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i],
 -                                                             chunk_v,
 -                                                             huqie.qie(
 -                                                                 pieces_[i]).split(" "),
 -                                                             chunks_tks,
 -                                                             tkweight, vtweight)
 -             mx = np.max(sim) * 0.99
 -             if mx < 0.55:
 -                 continue
 -             cites[idx[i]] = list(
 -                 set([str(i) for i in range(len(chunk_v)) if sim[i] > mx]))[:4]
 - 
 -         res = ""
 -         for i, p in enumerate(pieces):
 -             res += p
 -             if i not in idx:
 -                 continue
 -             if i not in cites:
 -                 continue
 -             res += "##%s$$" % "$".join(cites[i])
 - 
 -         return res
 - 
 -     def rerank(self, sres, query, tkweight=0.3,
 -                vtweight=0.7, cfield="content_ltks"):
 -         ins_embd = [
 -             Dealer.trans2floats(
 -                 sres.field[i].get("q_%d_vec" % len(sres.query_vector), "\t".join(["0"] * len(sres.query_vector)))) for i in sres.ids]
 -         if not ins_embd:
 -             return [], [], []
 -         ins_tw = [sres.field[i][cfield].split(" ")
 -                   for i in sres.ids]
 -         sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
 -                                                         ins_embd,
 -                                                         huqie.qie(
 -                                                             query).split(" "),
 -                                                         ins_tw, tkweight, vtweight)
 -         return sim, tksim, vtsim
 - 
 -     def hybrid_similarity(self, ans_embd, ins_embd, ans, inst):
 -         return self.qryr.hybrid_similarity(ans_embd,
 -                                            ins_embd,
 -                                            huqie.qie(ans).split(" "),
 -                                            huqie.qie(inst).split(" "))
 - 
 -     def retrieval(self, question, embd_mdl, tenant_id, kb_ids, page, page_size, similarity_threshold=0.2,
 -                   vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True):
 -         ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
 -         if not question:
 -             return ranks
 -         req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": top,
 -                "question": question, "vector": True,
 -                "similarity": similarity_threshold}
 -         sres = self.search(req, index_name(tenant_id), embd_mdl)
 - 
 -         sim, tsim, vsim = self.rerank(
 -             sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
 -         idx = np.argsort(sim * -1)
 - 
 -         dim = len(sres.query_vector)
 -         start_idx = (page - 1) * page_size
 -         for i in idx:
 -             ranks["total"] += 1
 -             if sim[i] < similarity_threshold:
 -                 break
 -             start_idx -= 1
 -             if start_idx >= 0:
 -                 continue
 -             if len(ranks["chunks"]) == page_size:
 -                 if aggs:
 -                     continue
 -                 break
 -             id = sres.ids[i]
 -             dnm = sres.field[id]["docnm_kwd"]
 -             d = {
 -                 "chunk_id": id,
 -                 "content_ltks": sres.field[id]["content_ltks"],
 -                 "content_with_weight": sres.field[id]["content_with_weight"],
 -                 "doc_id": sres.field[id]["doc_id"],
 -                 "docnm_kwd": dnm,
 -                 "kb_id": sres.field[id]["kb_id"],
 -                 "important_kwd": sres.field[id].get("important_kwd", []),
 -                 "img_id": sres.field[id].get("img_id", ""),
 -                 "similarity": sim[i],
 -                 "vector_similarity": vsim[i],
 -                 "term_similarity": tsim[i],
 -                 "vector": self.trans2floats(sres.field[id].get("q_%d_vec" % dim, "\t".join(["0"] * dim)))
 -             }
 -             ranks["chunks"].append(d)
 -             if dnm not in ranks["doc_aggs"]:
 -                 ranks["doc_aggs"][dnm] = 0
 -             ranks["doc_aggs"][dnm] += 1
 - 
 -         return ranks
 - 
 -     def sql_retrieval(self, sql, fetch_size=128):
 -         sql = re.sub(r"[ ]+", " ", sql)
 -         replaces = []
 -         for r in re.finditer(r" ([a-z_]+_l?tks like |[a-z_]+_l?tks ?= ?)'([^']+)'", sql):
 -             fld, v = r.group(1), r.group(2)
 -             fld = re.sub(r" ?(like|=)$", "", fld).lower()
 -             if v[0] == "%%": v = v[1:-1]
 -             match = " MATCH({}, '{}', 'operator=OR;fuzziness=AUTO:1,3;minimum_should_match=30%') ".format(fld, huqie.qie(v))
 -             replaces.append((r.group(1)+r.group(2), match))
 - 
 -         for p, r in replaces: sql.replace(p, r)
 - 
 -         try:
 -             tbl = self.es.sql(sql, fetch_size)
 -             return tbl
 -         except Exception as e:
 -             es_logger(f"SQL failure: {sql} =>" + str(e))
 
 
  |