| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 | 
							- import copy
 - import re
 - from io import BytesIO
 - from xpinyin import Pinyin
 - import numpy as np
 - import pandas as pd
 - from openpyxl import load_workbook
 - from dateutil.parser import parse as datetime_parse
 - 
 - from api.db.services.knowledgebase_service import KnowledgebaseService
 - from rag.parser import is_english, tokenize
 - from rag.nlp import huqie, stemmer
 - 
 - 
 - class Excel(object):
 -     def __call__(self, fnm, binary=None, callback=None):
 -         if not binary:
 -             wb = load_workbook(fnm)
 -         else:
 -             wb = load_workbook(BytesIO(binary))
 -         total = 0
 -         for sheetname in wb.sheetnames:
 -             total += len(list(wb[sheetname].rows))
 - 
 -         res, fails, done = [], [], 0
 -         for sheetname in wb.sheetnames:
 -             ws = wb[sheetname]
 -             rows = list(ws.rows)
 -             headers = [cell.value for cell in rows[0]]
 -             missed = set([i for i, h in enumerate(headers) if h is None])
 -             headers = [cell.value for i, cell in enumerate(rows[0]) if i not in missed]
 -             data = []
 -             for i, r in enumerate(rows[1:]):
 -                 row = [cell.value for ii, cell in enumerate(r) if ii not in missed]
 -                 if len(row) != len(headers):
 -                     fails.append(str(i))
 -                     continue
 -                 data.append(row)
 -                 done += 1
 -                 if done % 999 == 0:
 -                     callback(done * 0.6 / total, ("Extract records: {}".format(len(res)) + (
 -                         f"{len(fails)} failure({sheetname}), line: %s..." % (",".join(fails[:3])) if fails else "")))
 -             res.append(pd.DataFrame(np.array(data), columns=headers))
 - 
 -         callback(0.6, ("Extract records: {}. ".format(done) + (
 -             f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
 -         return res
 - 
 - 
 - def trans_datatime(s):
 -     try:
 -         return datetime_parse(s.strip()).strftime("%Y-%m-%dT%H:%M:%S")
 -     except Exception as e:
 -         pass
 - 
 - 
 - def trans_bool(s):
 -     if re.match(r"(true|yes|是)$", str(s).strip(), flags=re.IGNORECASE): return ["yes", "是"]
 -     if re.match(r"(false|no|否)$", str(s).strip(), flags=re.IGNORECASE): return ["no", "否"]
 - 
 - 
 - def column_data_type(arr):
 -     uni = len(set([a for a in arr if a is not None]))
 -     counts = {"int": 0, "float": 0, "text": 0, "datetime": 0, "bool": 0}
 -     trans = {t: f for f, t in
 -              [(int, "int"), (float, "float"), (trans_datatime, "datetime"), (trans_bool, "bool"), (str, "text")]}
 -     for a in arr:
 -         if a is None: continue
 -         if re.match(r"[+-]?[0-9]+(\.0+)?$", str(a).replace("%%", "")):
 -             counts["int"] += 1
 -         elif re.match(r"[+-]?[0-9.]+$", str(a).replace("%%", "")):
 -             counts["float"] += 1
 -         elif re.match(r"(true|false|yes|no|是|否)$", str(a), flags=re.IGNORECASE):
 -             counts["bool"] += 1
 -         elif trans_datatime(str(a)):
 -             counts["datetime"] += 1
 -         else:
 -             counts["text"] += 1
 -     counts = sorted(counts.items(), key=lambda x: x[1] * -1)
 -     ty = counts[0][0]
 -     for i in range(len(arr)):
 -         if arr[i] is None: continue
 -         try:
 -             arr[i] = trans[ty](str(arr[i]))
 -         except Exception as e:
 -             arr[i] = None
 -     if ty == "text":
 -         if len(arr) > 128 and uni / len(arr) < 0.1:
 -             ty = "keyword"
 -     return arr, ty
 - 
 - 
 - def chunk(filename, binary=None, callback=None, **kwargs):
 -     dfs = []
 -     if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
 -         callback(0.1, "Start to parse.")
 -         excel_parser = Excel()
 -         dfs = excel_parser(filename, binary, callback)
 -     elif re.search(r"\.(txt|csv)$", filename, re.IGNORECASE):
 -         callback(0.1, "Start to parse.")
 -         txt = ""
 -         if binary:
 -             txt = binary.decode("utf-8")
 -         else:
 -             with open(filename, "r") as f:
 -                 while True:
 -                     l = f.readline()
 -                     if not l: break
 -                     txt += l
 -         lines = txt.split("\n")
 -         fails = []
 -         headers = lines[0].split(kwargs.get("delimiter", "\t"))
 -         rows = []
 -         for i, line in enumerate(lines[1:]):
 -             row = [l for l in line.split(kwargs.get("delimiter", "\t"))]
 -             if len(row) != len(headers):
 -                 fails.append(str(i))
 -                 continue
 -             rows.append(row)
 -             if len(rows) % 999 == 0:
 -                 callback(len(rows) * 0.6 / len(lines), ("Extract records: {}".format(len(rows)) + (
 -                     f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
 - 
 -         callback(0.6, ("Extract records: {}".format(len(rows)) + (
 -             f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
 - 
 -         dfs = [pd.DataFrame(np.array(rows), columns=headers)]
 - 
 -     else:
 -         raise NotImplementedError("file type not supported yet(excel, text, csv supported)")
 - 
 -     res = []
 -     PY = Pinyin()
 -     fieds_map = {"text": "_tks", "int": "_int", "keyword": "_kwd", "float": "_flt", "datetime": "_dt", "bool": "_kwd"}
 -     for df in dfs:
 -         for n in ["id", "_id", "index", "idx"]:
 -             if n in df.columns: del df[n]
 -         clmns = df.columns.values
 -         txts = list(copy.deepcopy(clmns))
 -         py_clmns = [PY.get_pinyins(n)[0].replace("-", "_") for n in clmns]
 -         clmn_tys = []
 -         for j in range(len(clmns)):
 -             cln, ty = column_data_type(df[clmns[j]])
 -             clmn_tys.append(ty)
 -             df[clmns[j]] = cln
 -             if ty == "text": txts.extend([str(c) for c in cln if c])
 -         clmns_map = [(py_clmns[j] + fieds_map[clmn_tys[j]], clmns[j]) for i in range(len(clmns))]
 - 
 -         eng = is_english(txts)
 -         for ii, row in df.iterrows():
 -             d = {}
 -             row_txt = []
 -             for j in range(len(clmns)):
 -                 if row[clmns[j]] is None: continue
 -                 fld = clmns_map[j][0]
 -                 d[fld] = row[clmns[j]] if clmn_tys[j] != "text" else huqie.qie(row[clmns[j]])
 -                 row_txt.append("{}:{}".format(clmns[j], row[clmns[j]]))
 -             if not row_txt: continue
 -             tokenize(d, "; ".join(row_txt), eng)
 -             res.append(d)
 - 
 -         KnowledgebaseService.update_parser_config(kwargs["kb_id"], {"field_map": {k: v for k, v in clmns_map}})
 -     callback(0.6, "")
 - 
 -     return res
 - 
 - 
 - if __name__ == "__main__":
 -     import sys
 - 
 - 
 -     def dummy(a, b):
 -         pass
 - 
 - 
 -     chunk(sys.argv[1], callback=dummy)
 
 
  |