您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

recognizer.py 18KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481
  1. #
  2. # Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import logging
  17. import os
  18. import math
  19. import numpy as np
  20. import cv2
  21. from functools import cmp_to_key
  22. import onnxruntime as ort
  23. from huggingface_hub import snapshot_download
  24. from api.utils.file_utils import get_project_base_directory
  25. from .operators import * # noqa: F403
  26. from .operators import preprocess
  27. from . import operators
  28. class Recognizer(object):
  29. def __init__(self, label_list, task_name, model_dir=None):
  30. """
  31. If you have trouble downloading HuggingFace models, -_^ this might help!!
  32. For Linux:
  33. export HF_ENDPOINT=https://hf-mirror.com
  34. For Windows:
  35. Good luck
  36. ^_-
  37. """
  38. if not model_dir:
  39. model_dir = os.path.join(
  40. get_project_base_directory(),
  41. "rag/res/deepdoc")
  42. model_file_path = os.path.join(model_dir, task_name + ".onnx")
  43. if not os.path.exists(model_file_path):
  44. model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
  45. local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
  46. local_dir_use_symlinks=False)
  47. model_file_path = os.path.join(model_dir, task_name + ".onnx")
  48. else:
  49. model_file_path = os.path.join(model_dir, task_name + ".onnx")
  50. if not os.path.exists(model_file_path):
  51. raise ValueError("not find model file path {}".format(
  52. model_file_path))
  53. def cuda_is_available():
  54. try:
  55. import torch
  56. if torch.cuda.is_available():
  57. return True
  58. except Exception:
  59. return False
  60. return False
  61. # https://github.com/microsoft/onnxruntime/issues/9509#issuecomment-951546580
  62. # Shrink GPU memory after execution
  63. self.run_options = ort.RunOptions()
  64. if cuda_is_available():
  65. options = ort.SessionOptions()
  66. options.enable_cpu_mem_arena = False
  67. cuda_provider_options = {
  68. "device_id": 0, # Use specific GPU
  69. "gpu_mem_limit": 512 * 1024 * 1024, # Limit gpu memory
  70. "arena_extend_strategy": "kNextPowerOfTwo", # gpu memory allocation strategy
  71. }
  72. self.ort_sess = ort.InferenceSession(
  73. model_file_path, options=options,
  74. providers=['CUDAExecutionProvider'],
  75. provider_options=[cuda_provider_options]
  76. )
  77. self.run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:0")
  78. logging.info(f"Recognizer {task_name} uses GPU")
  79. else:
  80. self.ort_sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider'])
  81. self.run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "cpu")
  82. logging.info(f"Recognizer {task_name} uses CPU")
  83. self.input_names = [node.name for node in self.ort_sess.get_inputs()]
  84. self.output_names = [node.name for node in self.ort_sess.get_outputs()]
  85. self.input_shape = self.ort_sess.get_inputs()[0].shape[2:4]
  86. self.label_list = label_list
  87. @staticmethod
  88. def sort_Y_firstly(arr, threashold):
  89. def cmp(c1, c2):
  90. diff = c1["top"] - c2["top"]
  91. if abs(diff) < threashold:
  92. diff = c1["x0"] - c2["x0"]
  93. return diff
  94. arr = sorted(arr, key=cmp_to_key(cmp))
  95. return arr
  96. @staticmethod
  97. def sort_X_firstly(arr, threashold):
  98. def cmp(c1, c2):
  99. diff = c1["x0"] - c2["x0"]
  100. if abs(diff) < threashold:
  101. diff = c1["top"] - c2["top"]
  102. return diff
  103. arr = sorted(arr, key=cmp_to_key(cmp))
  104. return arr
  105. @staticmethod
  106. def sort_C_firstly(arr, thr=0):
  107. # sort using y1 first and then x1
  108. # sorted(arr, key=lambda r: (r["x0"], r["top"]))
  109. arr = Recognizer.sort_X_firstly(arr, thr)
  110. for i in range(len(arr) - 1):
  111. for j in range(i, -1, -1):
  112. # restore the order using th
  113. if "C" not in arr[j] or "C" not in arr[j + 1]:
  114. continue
  115. if arr[j + 1]["C"] < arr[j]["C"] \
  116. or (
  117. arr[j + 1]["C"] == arr[j]["C"]
  118. and arr[j + 1]["top"] < arr[j]["top"]
  119. ):
  120. tmp = arr[j]
  121. arr[j] = arr[j + 1]
  122. arr[j + 1] = tmp
  123. return arr
  124. @staticmethod
  125. def sort_R_firstly(arr, thr=0):
  126. # sort using y1 first and then x1
  127. # sorted(arr, key=lambda r: (r["top"], r["x0"]))
  128. arr = Recognizer.sort_Y_firstly(arr, thr)
  129. for i in range(len(arr) - 1):
  130. for j in range(i, -1, -1):
  131. if "R" not in arr[j] or "R" not in arr[j + 1]:
  132. continue
  133. if arr[j + 1]["R"] < arr[j]["R"] \
  134. or (
  135. arr[j + 1]["R"] == arr[j]["R"]
  136. and arr[j + 1]["x0"] < arr[j]["x0"]
  137. ):
  138. tmp = arr[j]
  139. arr[j] = arr[j + 1]
  140. arr[j + 1] = tmp
  141. return arr
  142. @staticmethod
  143. def overlapped_area(a, b, ratio=True):
  144. tp, btm, x0, x1 = a["top"], a["bottom"], a["x0"], a["x1"]
  145. if b["x0"] > x1 or b["x1"] < x0:
  146. return 0
  147. if b["bottom"] < tp or b["top"] > btm:
  148. return 0
  149. x0_ = max(b["x0"], x0)
  150. x1_ = min(b["x1"], x1)
  151. assert x0_ <= x1_, "Bbox mismatch! T:{},B:{},X0:{},X1:{} ==> {}".format(
  152. tp, btm, x0, x1, b)
  153. tp_ = max(b["top"], tp)
  154. btm_ = min(b["bottom"], btm)
  155. assert tp_ <= btm_, "Bbox mismatch! T:{},B:{},X0:{},X1:{} => {}".format(
  156. tp, btm, x0, x1, b)
  157. ov = (btm_ - tp_) * (x1_ - x0_) if x1 - \
  158. x0 != 0 and btm - tp != 0 else 0
  159. if ov > 0 and ratio:
  160. ov /= (x1 - x0) * (btm - tp)
  161. return ov
  162. @staticmethod
  163. def layouts_cleanup(boxes, layouts, far=2, thr=0.7):
  164. def notOverlapped(a, b):
  165. return any([a["x1"] < b["x0"],
  166. a["x0"] > b["x1"],
  167. a["bottom"] < b["top"],
  168. a["top"] > b["bottom"]])
  169. i = 0
  170. while i + 1 < len(layouts):
  171. j = i + 1
  172. while j < min(i + far, len(layouts)) \
  173. and (layouts[i].get("type", "") != layouts[j].get("type", "")
  174. or notOverlapped(layouts[i], layouts[j])):
  175. j += 1
  176. if j >= min(i + far, len(layouts)):
  177. i += 1
  178. continue
  179. if Recognizer.overlapped_area(layouts[i], layouts[j]) < thr \
  180. and Recognizer.overlapped_area(layouts[j], layouts[i]) < thr:
  181. i += 1
  182. continue
  183. if layouts[i].get("score") and layouts[j].get("score"):
  184. if layouts[i]["score"] > layouts[j]["score"]:
  185. layouts.pop(j)
  186. else:
  187. layouts.pop(i)
  188. continue
  189. area_i, area_i_1 = 0, 0
  190. for b in boxes:
  191. if not notOverlapped(b, layouts[i]):
  192. area_i += Recognizer.overlapped_area(b, layouts[i], False)
  193. if not notOverlapped(b, layouts[j]):
  194. area_i_1 += Recognizer.overlapped_area(b, layouts[j], False)
  195. if area_i > area_i_1:
  196. layouts.pop(j)
  197. else:
  198. layouts.pop(i)
  199. return layouts
  200. def create_inputs(self, imgs, im_info):
  201. """generate input for different model type
  202. Args:
  203. imgs (list(numpy)): list of images (np.ndarray)
  204. im_info (list(dict)): list of image info
  205. Returns:
  206. inputs (dict): input of model
  207. """
  208. inputs = {}
  209. im_shape = []
  210. scale_factor = []
  211. if len(imgs) == 1:
  212. inputs['image'] = np.array((imgs[0],)).astype('float32')
  213. inputs['im_shape'] = np.array(
  214. (im_info[0]['im_shape'],)).astype('float32')
  215. inputs['scale_factor'] = np.array(
  216. (im_info[0]['scale_factor'],)).astype('float32')
  217. return inputs
  218. for e in im_info:
  219. im_shape.append(np.array((e['im_shape'],)).astype('float32'))
  220. scale_factor.append(np.array((e['scale_factor'],)).astype('float32'))
  221. inputs['im_shape'] = np.concatenate(im_shape, axis=0)
  222. inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
  223. imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
  224. max_shape_h = max([e[0] for e in imgs_shape])
  225. max_shape_w = max([e[1] for e in imgs_shape])
  226. padding_imgs = []
  227. for img in imgs:
  228. im_c, im_h, im_w = img.shape[:]
  229. padding_im = np.zeros(
  230. (im_c, max_shape_h, max_shape_w), dtype=np.float32)
  231. padding_im[:, :im_h, :im_w] = img
  232. padding_imgs.append(padding_im)
  233. inputs['image'] = np.stack(padding_imgs, axis=0)
  234. return inputs
  235. @staticmethod
  236. def find_overlapped(box, boxes_sorted_by_y, naive=False):
  237. if not boxes_sorted_by_y:
  238. return
  239. bxs = boxes_sorted_by_y
  240. s, e, ii = 0, len(bxs), 0
  241. while s < e and not naive:
  242. ii = (e + s) // 2
  243. pv = bxs[ii]
  244. if box["bottom"] < pv["top"]:
  245. e = ii
  246. continue
  247. if box["top"] > pv["bottom"]:
  248. s = ii + 1
  249. continue
  250. break
  251. while s < ii:
  252. if box["top"] > bxs[s]["bottom"]:
  253. s += 1
  254. break
  255. while e - 1 > ii:
  256. if box["bottom"] < bxs[e - 1]["top"]:
  257. e -= 1
  258. break
  259. max_overlaped_i, max_overlaped = None, 0
  260. for i in range(s, e):
  261. ov = Recognizer.overlapped_area(bxs[i], box)
  262. if ov <= max_overlaped:
  263. continue
  264. max_overlaped_i = i
  265. max_overlaped = ov
  266. return max_overlaped_i
  267. @staticmethod
  268. def find_horizontally_tightest_fit(box, boxes):
  269. if not boxes:
  270. return
  271. min_dis, min_i = 1000000, None
  272. for i,b in enumerate(boxes):
  273. if box.get("layoutno", "0") != b.get("layoutno", "0"):
  274. continue
  275. dis = min(abs(box["x0"] - b["x0"]), abs(box["x1"] - b["x1"]), abs(box["x0"]+box["x1"] - b["x1"] - b["x0"])/2)
  276. if dis < min_dis:
  277. min_i = i
  278. min_dis = dis
  279. return min_i
  280. @staticmethod
  281. def find_overlapped_with_threashold(box, boxes, thr=0.3):
  282. if not boxes:
  283. return
  284. max_overlapped_i, max_overlapped, _max_overlapped = None, thr, 0
  285. s, e = 0, len(boxes)
  286. for i in range(s, e):
  287. ov = Recognizer.overlapped_area(box, boxes[i])
  288. _ov = Recognizer.overlapped_area(boxes[i], box)
  289. if (ov, _ov) < (max_overlapped, _max_overlapped):
  290. continue
  291. max_overlapped_i = i
  292. max_overlapped = ov
  293. _max_overlapped = _ov
  294. return max_overlapped_i
  295. def preprocess(self, image_list):
  296. inputs = []
  297. if "scale_factor" in self.input_names:
  298. preprocess_ops = []
  299. for op_info in [
  300. {'interp': 2, 'keep_ratio': False, 'target_size': [800, 608], 'type': 'LinearResize'},
  301. {'is_scale': True, 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'type': 'StandardizeImage'},
  302. {'type': 'Permute'},
  303. {'stride': 32, 'type': 'PadStride'}
  304. ]:
  305. new_op_info = op_info.copy()
  306. op_type = new_op_info.pop('type')
  307. preprocess_ops.append(getattr(operators, op_type)(**new_op_info))
  308. for im_path in image_list:
  309. im, im_info = preprocess(im_path, preprocess_ops)
  310. inputs.append({"image": np.array((im,)).astype('float32'),
  311. "scale_factor": np.array((im_info["scale_factor"],)).astype('float32')})
  312. else:
  313. hh, ww = self.input_shape
  314. for img in image_list:
  315. h, w = img.shape[:2]
  316. img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
  317. img = cv2.resize(np.array(img).astype('float32'), (ww, hh))
  318. # Scale input pixel values to 0 to 1
  319. img /= 255.0
  320. img = img.transpose(2, 0, 1)
  321. img = img[np.newaxis, :, :, :].astype(np.float32)
  322. inputs.append({self.input_names[0]: img, "scale_factor": [w/ww, h/hh]})
  323. return inputs
  324. def postprocess(self, boxes, inputs, thr):
  325. if "scale_factor" in self.input_names:
  326. bb = []
  327. for b in boxes:
  328. clsid, bbox, score = int(b[0]), b[2:], b[1]
  329. if score < thr:
  330. continue
  331. if clsid >= len(self.label_list):
  332. continue
  333. bb.append({
  334. "type": self.label_list[clsid].lower(),
  335. "bbox": [float(t) for t in bbox.tolist()],
  336. "score": float(score)
  337. })
  338. return bb
  339. def xywh2xyxy(x):
  340. # [x, y, w, h] to [x1, y1, x2, y2]
  341. y = np.copy(x)
  342. y[:, 0] = x[:, 0] - x[:, 2] / 2
  343. y[:, 1] = x[:, 1] - x[:, 3] / 2
  344. y[:, 2] = x[:, 0] + x[:, 2] / 2
  345. y[:, 3] = x[:, 1] + x[:, 3] / 2
  346. return y
  347. def compute_iou(box, boxes):
  348. # Compute xmin, ymin, xmax, ymax for both boxes
  349. xmin = np.maximum(box[0], boxes[:, 0])
  350. ymin = np.maximum(box[1], boxes[:, 1])
  351. xmax = np.minimum(box[2], boxes[:, 2])
  352. ymax = np.minimum(box[3], boxes[:, 3])
  353. # Compute intersection area
  354. intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
  355. # Compute union area
  356. box_area = (box[2] - box[0]) * (box[3] - box[1])
  357. boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
  358. union_area = box_area + boxes_area - intersection_area
  359. # Compute IoU
  360. iou = intersection_area / union_area
  361. return iou
  362. def iou_filter(boxes, scores, iou_threshold):
  363. sorted_indices = np.argsort(scores)[::-1]
  364. keep_boxes = []
  365. while sorted_indices.size > 0:
  366. # Pick the last box
  367. box_id = sorted_indices[0]
  368. keep_boxes.append(box_id)
  369. # Compute IoU of the picked box with the rest
  370. ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
  371. # Remove boxes with IoU over the threshold
  372. keep_indices = np.where(ious < iou_threshold)[0]
  373. # print(keep_indices.shape, sorted_indices.shape)
  374. sorted_indices = sorted_indices[keep_indices + 1]
  375. return keep_boxes
  376. boxes = np.squeeze(boxes).T
  377. # Filter out object confidence scores below threshold
  378. scores = np.max(boxes[:, 4:], axis=1)
  379. boxes = boxes[scores > thr, :]
  380. scores = scores[scores > thr]
  381. if len(boxes) == 0:
  382. return []
  383. # Get the class with the highest confidence
  384. class_ids = np.argmax(boxes[:, 4:], axis=1)
  385. boxes = boxes[:, :4]
  386. input_shape = np.array([inputs["scale_factor"][0], inputs["scale_factor"][1], inputs["scale_factor"][0], inputs["scale_factor"][1]])
  387. boxes = np.multiply(boxes, input_shape, dtype=np.float32)
  388. boxes = xywh2xyxy(boxes)
  389. unique_class_ids = np.unique(class_ids)
  390. indices = []
  391. for class_id in unique_class_ids:
  392. class_indices = np.where(class_ids == class_id)[0]
  393. class_boxes = boxes[class_indices, :]
  394. class_scores = scores[class_indices]
  395. class_keep_boxes = iou_filter(class_boxes, class_scores, 0.2)
  396. indices.extend(class_indices[class_keep_boxes])
  397. return [{
  398. "type": self.label_list[class_ids[i]].lower(),
  399. "bbox": [float(t) for t in boxes[i].tolist()],
  400. "score": float(scores[i])
  401. } for i in indices]
  402. def __call__(self, image_list, thr=0.7, batch_size=16):
  403. res = []
  404. imgs = []
  405. for i in range(len(image_list)):
  406. if not isinstance(image_list[i], np.ndarray):
  407. imgs.append(np.array(image_list[i]))
  408. else:
  409. imgs.append(image_list[i])
  410. batch_loop_cnt = math.ceil(float(len(imgs)) / batch_size)
  411. for i in range(batch_loop_cnt):
  412. start_index = i * batch_size
  413. end_index = min((i + 1) * batch_size, len(imgs))
  414. batch_image_list = imgs[start_index:end_index]
  415. inputs = self.preprocess(batch_image_list)
  416. logging.debug("preprocess")
  417. for ins in inputs:
  418. bb = self.postprocess(self.ort_sess.run(None, {k:v for k,v in ins.items() if k in self.input_names}, self.run_options)[0], ins, thr)
  419. res.append(bb)
  420. #seeit.save_results(image_list, res, self.label_list, threshold=thr)
  421. return res