Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167
  1. # Licensed under the Apache License, Version 2.0 (the "License");
  2. # you may not use this file except in compliance with the License.
  3. # You may obtain a copy of the License at
  4. #
  5. # http://www.apache.org/licenses/LICENSE-2.0
  6. #
  7. # Unless required by applicable law or agreed to in writing, software
  8. # distributed under the License is distributed on an "AS IS" BASIS,
  9. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. # See the License for the specific language governing permissions and
  11. # limitations under the License.
  12. #
  13. from openpyxl import load_workbook, Workbook
  14. import sys
  15. from io import BytesIO
  16. from rag.nlp import find_codec
  17. import pandas as pd
  18. class RAGFlowExcelParser:
  19. def html(self, fnm, chunk_rows=256):
  20. # if isinstance(fnm, str):
  21. # wb = load_workbook(fnm)
  22. # else:
  23. # wb = load_workbook(BytesIO(fnm))++
  24. s_fnm = fnm
  25. if not isinstance(fnm, str):
  26. s_fnm = BytesIO(fnm)
  27. else:
  28. pass
  29. try:
  30. wb = load_workbook(s_fnm)
  31. except Exception as e:
  32. print(f'****wxy: file parser error: {e}, s_fnm={s_fnm}, trying convert files')
  33. df = pd.read_excel(s_fnm)
  34. wb = Workbook()
  35. # if len(wb.worksheets) > 0:
  36. # del wb.worksheets[0]
  37. # else: pass
  38. ws = wb.active
  39. ws.title = "Data"
  40. for col_num, column_name in enumerate(df.columns, 1):
  41. ws.cell(row=1, column=col_num, value=column_name)
  42. else:
  43. pass
  44. for row_num, row in enumerate(df.values, 2):
  45. for col_num, value in enumerate(row, 1):
  46. ws.cell(row=row_num, column=col_num, value=value)
  47. else:
  48. pass
  49. else:
  50. pass
  51. tb_chunks = []
  52. for sheetname in wb.sheetnames:
  53. ws = wb[sheetname]
  54. rows = list(ws.rows)
  55. if not rows:
  56. continue
  57. tb_rows_0 = "<tr>"
  58. for t in list(rows[0]):
  59. tb_rows_0 += f"<th>{t.value}</th>"
  60. tb_rows_0 += "</tr>"
  61. for chunk_i in range((len(rows) - 1) // chunk_rows + 1):
  62. tb = ""
  63. tb += f"<table><caption>{sheetname}</caption>"
  64. tb += tb_rows_0
  65. for r in list(
  66. rows[1 + chunk_i * chunk_rows: 1 + (chunk_i + 1) * chunk_rows]
  67. ):
  68. tb += "<tr>"
  69. for i, c in enumerate(r):
  70. if c.value is None:
  71. tb += "<td></td>"
  72. else:
  73. tb += f"<td>{c.value}</td>"
  74. tb += "</tr>"
  75. tb += "</table>\n"
  76. tb_chunks.append(tb)
  77. return tb_chunks
  78. def __call__(self, fnm):
  79. # if isinstance(fnm, str):
  80. # wb = load_workbook(fnm)
  81. # else:
  82. # wb = load_workbook(BytesIO(fnm))
  83. s_fnm = fnm
  84. if not isinstance(fnm, str):
  85. s_fnm = BytesIO(fnm)
  86. else:
  87. pass
  88. try:
  89. wb = load_workbook(s_fnm)
  90. except Exception as e:
  91. print(f'****wxy: file parser error: {e}, s_fnm={s_fnm}, trying convert files')
  92. df = pd.read_excel(s_fnm)
  93. wb = Workbook()
  94. if len(wb.worksheets) > 0:
  95. del wb.worksheets[0]
  96. else:
  97. pass
  98. ws = wb.active
  99. ws.title = "Data"
  100. for col_num, column_name in enumerate(df.columns, 1):
  101. ws.cell(row=1, column=col_num, value=column_name)
  102. else:
  103. pass
  104. for row_num, row in enumerate(df.values, 2):
  105. for col_num, value in enumerate(row, 1):
  106. ws.cell(row=row_num, column=col_num, value=value)
  107. else:
  108. pass
  109. else:
  110. pass
  111. res = []
  112. for sheetname in wb.sheetnames:
  113. ws = wb[sheetname]
  114. rows = list(ws.rows)
  115. if not rows:
  116. continue
  117. ti = list(rows[0])
  118. for r in list(rows[1:]):
  119. fields = []
  120. for i, c in enumerate(r):
  121. if not c.value:
  122. continue
  123. t = str(ti[i].value) if i < len(ti) else ""
  124. t += (":" if t else "") + str(c.value)
  125. fields.append(t)
  126. line = "; ".join(fields)
  127. if sheetname.lower().find("sheet") < 0:
  128. line += " ——" + sheetname
  129. res.append(line)
  130. return res
  131. @staticmethod
  132. def row_number(fnm, binary):
  133. if fnm.split(".")[-1].lower().find("xls") >= 0:
  134. wb = load_workbook(BytesIO(binary))
  135. total = 0
  136. for sheetname in wb.sheetnames:
  137. ws = wb[sheetname]
  138. total += len(list(ws.rows))
  139. return total
  140. if fnm.split(".")[-1].lower() in ["csv", "txt"]:
  141. encoding = find_codec(binary)
  142. txt = binary.decode(encoding, errors="ignore")
  143. return len(txt.split("\n"))
  144. if __name__ == "__main__":
  145. psr = RAGFlowExcelParser()
  146. psr(sys.argv[1])