| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385 | 
							- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - from zhipuai import ZhipuAI
 - from dashscope import Generation
 - from abc import ABC
 - from openai import OpenAI
 - import openai
 - from ollama import Client
 - from volcengine.maas.v2 import MaasService
 - from rag.nlp import is_english
 - from rag.utils import num_tokens_from_string
 - 
 - 
 - class Base(ABC):
 -     def __init__(self, key, model_name, base_url):
 -         self.client = OpenAI(api_key=key, base_url=base_url)
 -         self.model_name = model_name
 - 
 -     def chat(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         try:
 -             response = self.client.chat.completions.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 **gen_conf)
 -             ans = response.choices[0].message.content.strip()
 -             if response.choices[0].finish_reason == "length":
 -                 ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 -                     [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -             return ans, response.usage.total_tokens
 -         except openai.APIError as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         ans = ""
 -         total_tokens = 0
 -         try:
 -             response = self.client.chat.completions.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 stream=True,
 -                 **gen_conf)
 -             for resp in response:
 -                 if not resp.choices or not resp.choices[0].delta.content:continue
 -                 ans += resp.choices[0].delta.content
 -                 total_tokens += 1
 -                 if resp.choices[0].finish_reason == "length":
 -                     ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 -                         [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -                 yield ans
 - 
 -         except openai.APIError as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield total_tokens
 - 
 - 
 - class GptTurbo(Base):
 -     def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"):
 -         if not base_url: base_url="https://api.openai.com/v1"
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class MoonshotChat(Base):
 -     def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"):
 -         if not base_url: base_url="https://api.moonshot.cn/v1"
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class XinferenceChat(Base):
 -     def __init__(self, key=None, model_name="", base_url=""):
 -         key = "xxx"
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class DeepSeekChat(Base):
 -     def __init__(self, key, model_name="deepseek-chat", base_url="https://api.deepseek.com/v1"):
 -         if not base_url: base_url="https://api.deepseek.com/v1"
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class QWenChat(Base):
 -     def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs):
 -         import dashscope
 -         dashscope.api_key = key
 -         self.model_name = model_name
 - 
 -     def chat(self, system, history, gen_conf):
 -         from http import HTTPStatus
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         response = Generation.call(
 -             self.model_name,
 -             messages=history,
 -             result_format='message',
 -             **gen_conf
 -         )
 -         ans = ""
 -         tk_count = 0
 -         if response.status_code == HTTPStatus.OK:
 -             ans += response.output.choices[0]['message']['content']
 -             tk_count += response.usage.total_tokens
 -             if response.output.choices[0].get("finish_reason", "") == "length":
 -                 ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 -                     [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -             return ans, tk_count
 - 
 -         return "**ERROR**: " + response.message, tk_count
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         from http import HTTPStatus
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         ans = ""
 -         try:
 -             response = Generation.call(
 -                 self.model_name,
 -                 messages=history,
 -                 result_format='message',
 -                 stream=True,
 -                 **gen_conf
 -             )
 -             tk_count = 0
 -             for resp in response:
 -                 if resp.status_code == HTTPStatus.OK:
 -                     ans = resp.output.choices[0]['message']['content']
 -                     tk_count = resp.usage.total_tokens
 -                     if resp.output.choices[0].get("finish_reason", "") == "length":
 -                         ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 -                             [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -                     yield ans
 -                 else:
 -                     yield ans + "\n**ERROR**: " + resp.message if str(resp.message).find("Access")<0 else "Out of credit. Please set the API key in **settings > Model providers.**"
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield tk_count
 - 
 - 
 - class ZhipuChat(Base):
 -     def __init__(self, key, model_name="glm-3-turbo", **kwargs):
 -         self.client = ZhipuAI(api_key=key)
 -         self.model_name = model_name
 - 
 -     def chat(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         try:
 -             if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"]
 -             if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"]
 -             response = self.client.chat.completions.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 **gen_conf
 -             )
 -             ans = response.choices[0].message.content.strip()
 -             if response.choices[0].finish_reason == "length":
 -                 ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 -                     [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -             return ans, response.usage.total_tokens
 -         except Exception as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"]
 -         if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"]
 -         ans = ""
 -         try:
 -             response = self.client.chat.completions.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 stream=True,
 -                 **gen_conf
 -             )
 -             tk_count = 0
 -             for resp in response:
 -                 if not resp.choices[0].delta.content:continue
 -                 delta = resp.choices[0].delta.content
 -                 ans += delta
 -                 if resp.choices[0].finish_reason == "length":
 -                     ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 -                         [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -                     tk_count = resp.usage.total_tokens
 -                 if resp.choices[0].finish_reason == "stop": tk_count = resp.usage.total_tokens
 -                 yield ans
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield tk_count
 - 
 - 
 - class OllamaChat(Base):
 -     def __init__(self, key, model_name, **kwargs):
 -         self.client = Client(host=kwargs["base_url"])
 -         self.model_name = model_name
 - 
 -     def chat(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         try:
 -             options = {}
 -             if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
 -             if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
 -             if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"]
 -             if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
 -             if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
 -             response = self.client.chat(
 -                 model=self.model_name,
 -                 messages=history,
 -                 options=options
 -             )
 -             ans = response["message"]["content"].strip()
 -             return ans, response["eval_count"] + response.get("prompt_eval_count", 0)
 -         except Exception as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         options = {}
 -         if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
 -         if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
 -         if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"]
 -         if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
 -         if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
 -         ans = ""
 -         try:
 -             response = self.client.chat(
 -                 model=self.model_name,
 -                 messages=history,
 -                 stream=True,
 -                 options=options
 -             )
 -             for resp in response:
 -                 if resp["done"]:
 -                     yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
 -                 ans += resp["message"]["content"]
 -                 yield ans
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 -         yield 0
 - 
 - 
 - class LocalLLM(Base):
 -     class RPCProxy:
 -         def __init__(self, host, port):
 -             self.host = host
 -             self.port = int(port)
 -             self.__conn()
 - 
 -         def __conn(self):
 -             from multiprocessing.connection import Client
 -             self._connection = Client(
 -                 (self.host, self.port), authkey=b'infiniflow-token4kevinhu')
 - 
 -         def __getattr__(self, name):
 -             import pickle
 - 
 -             def do_rpc(*args, **kwargs):
 -                 for _ in range(3):
 -                     try:
 -                         self._connection.send(
 -                             pickle.dumps((name, args, kwargs)))
 -                         return pickle.loads(self._connection.recv())
 -                     except Exception as e:
 -                         self.__conn()
 -                 raise Exception("RPC connection lost!")
 - 
 -             return do_rpc
 - 
 -     def __init__(self, key, model_name="glm-3-turbo"):
 -         self.client = LocalLLM.RPCProxy("127.0.0.1", 7860)
 - 
 -     def chat(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         try:
 -             ans = self.client.chat(
 -                 history,
 -                 gen_conf
 -             )
 -             return ans, num_tokens_from_string(ans)
 -         except Exception as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         token_count = 0
 -         answer = ""
 -         try:
 -             for ans in self.client.chat_streamly(history, gen_conf):
 -                 answer += ans
 -                 token_count += 1
 -                 yield answer
 -         except Exception as e:
 -             yield answer + "\n**ERROR**: " + str(e)
 - 
 -         yield token_count
 - 
 - 
 - class VolcEngineChat(Base):
 -     def __init__(self, key, model_name, base_url):
 -         """
 -         Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special,
 -         Assemble ak, sk, ep_id into api_key, store it as a dictionary type, and parse it for use
 -         model_name is for display only
 -         """
 -         self.client = MaasService('maas-api.ml-platform-cn-beijing.volces.com', 'cn-beijing')
 -         self.volc_ak = eval(key).get('volc_ak', '')
 -         self.volc_sk = eval(key).get('volc_sk', '')
 -         self.client.set_ak(self.volc_ak)
 -         self.client.set_sk(self.volc_sk)
 -         self.model_name = eval(key).get('ep_id', '')
 - 
 -     def chat(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         try:
 -             req = {
 -                 "parameters": {
 -                     "min_new_tokens": gen_conf.get("min_new_tokens", 1),
 -                     "top_k": gen_conf.get("top_k", 0),
 -                     "max_prompt_tokens": gen_conf.get("max_prompt_tokens", 30000),
 -                     "temperature": gen_conf.get("temperature", 0.1),
 -                     "max_new_tokens": gen_conf.get("max_tokens", 1000),
 -                     "top_p": gen_conf.get("top_p", 0.3),
 -                 },
 -                 "messages": history
 -             }
 -             response = self.client.chat(self.model_name, req)
 -             ans = response.choices[0].message.content.strip()
 -             if response.choices[0].finish_reason == "length":
 -                 ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 -                     [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -             return ans, response.usage.total_tokens
 -         except Exception as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         ans = ""
 -         tk_count = 0
 -         try:
 -             req = {
 -                 "parameters": {
 -                     "min_new_tokens": gen_conf.get("min_new_tokens", 1),
 -                     "top_k": gen_conf.get("top_k", 0),
 -                     "max_prompt_tokens": gen_conf.get("max_prompt_tokens", 30000),
 -                     "temperature": gen_conf.get("temperature", 0.1),
 -                     "max_new_tokens": gen_conf.get("max_tokens", 1000),
 -                     "top_p": gen_conf.get("top_p", 0.3),
 -                 },
 -                 "messages": history
 -             }
 -             stream = self.client.stream_chat(self.model_name, req)
 -             for resp in stream:
 -                 if not resp.choices[0].message.content:
 -                     continue
 -                 ans += resp.choices[0].message.content
 -                 if resp.choices[0].finish_reason == "stop":
 -                     tk_count = resp.usage.total_tokens
 -                 yield ans
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 -         yield tk_count
 
 
  |