You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
balibabu bedb05012d
feat: Configure the root directory alias #1739 (#2875)
1 jaar geleden
.github Modified download_deps.py (#2747) 1 jaar geleden
agent refine token similarity (#2824) 1 jaar geleden
api update dashscope (#2871) 1 jaar geleden
conf support api-version and change default-model in adding azure-openai and openai (#2799) 1 jaar geleden
deepdoc fix: torch dependency start error (#2777) 1 jaar geleden
docker Refactor README on different docker version. (#2775) 1 jaar geleden
docs Updated instructions on downloading RAGFlow Slim and RAGFlow all-in-one. (#2785) 1 jaar geleden
graphrag Refactoring entity_resolution (#2692) 1 jaar geleden
rag add API for tenant function (#2866) 1 jaar geleden
sdk/python Refactor Chunk API (#2855) 1 jaar geleden
web feat: Configure the root directory alias #1739 (#2875) 1 jaar geleden
.gitattributes add lf end-lines in `*.sh` (#425) 1 jaar geleden
.gitignore Update SDK->sdk, and add create_dataset (#1047) 1 jaar geleden
CONTRIBUTING.md Added two developer guide and removed from README ' builder docker image' and 'launch service from source' (#2590) 1 jaar geleden
Dockerfile Fix README and some comments (#2774) 1 jaar geleden
Dockerfile.scratch.oc9 added back oc9 (#2663) 1 jaar geleden
Dockerfile.slim Fix README and some comments (#2774) 1 jaar geleden
LICENSE Initial commit 1 jaar geleden
README.md Fixed broken links. (#2805) 1 jaar geleden
README_ja.md Fixed broken links. (#2805) 1 jaar geleden
README_ko.md Fixed broken links. (#2805) 1 jaar geleden
README_zh.md Fixed broken links. (#2805) 1 jaar geleden
SECURITY.md Added kibana (#2286) 1 jaar geleden
download_deps.py Modified download_deps.py (#2747) 1 jaar geleden
poetry.lock update dashscope (#2871) 1 jaar geleden
poetry.toml Rework Dockerfile.scratch (#2525) 1 jaar geleden
printEnvironment.sh Add automation scripts to support displaying environment information such as RAGFlow repository version, operating system, Python version, etc. in a Linux environment for users to report issues. (#396) 1 jaar geleden
pyproject.toml update dashscope (#2871) 1 jaar geleden
ubuntu.sources Rework Dockerfile.scratch (#2525) 1 jaar geleden

README.md

English | 简体中文 | 日本語 | 한국어

Latest Release Static Badge license

Document | Roadmap | Twitter | Discord | Demo

📕 Table of Contents

💡 What is RAGFlow?

RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data.

🎮 Demo

Try our demo at https://demo.ragflow.io.

🔥 Latest Updates

  • 2024-09-29 Optimizes multi-round conversations.
  • 2024-09-13 Adds search mode for knowledge base Q&A.
  • 2024-09-09 Adds a medical consultant agent template.
  • 2024-08-22 Support text to SQL statements through RAG.
  • 2024-08-02 Supports GraphRAG inspired by graphrag and mind map.

🎉 Stay Tuned

⭐️ Star our repository to stay up-to-date with exciting new features and improvements! Get instant notifications for new releases! 🌟

🌟 Key Features

🍭 “Quality in, quality out”

  • Deep document understanding-based knowledge extraction from unstructured data with complicated formats.
  • Finds “needle in a data haystack” of literally unlimited tokens.

🍱 Template-based chunking

  • Intelligent and explainable.
  • Plenty of template options to choose from.

🌱 Grounded citations with reduced hallucinations

  • Visualization of text chunking to allow human intervention.
  • Quick view of the key references and traceable citations to support grounded answers.

🍔 Compatibility with heterogeneous data sources

  • Supports Word, slides, excel, txt, images, scanned copies, structured data, web pages, and more.

🛀 Automated and effortless RAG workflow

  • Streamlined RAG orchestration catered to both personal and large businesses.
  • Configurable LLMs as well as embedding models.
  • Multiple recall paired with fused re-ranking.
  • Intuitive APIs for seamless integration with business.

🔎 System Architecture

🎬 Get Started

📝 Prerequisites

  • CPU >= 4 cores
  • RAM >= 16 GB
  • Disk >= 50 GB
  • Docker >= 24.0.0 & Docker Compose >= v2.26.1 > If you have not installed Docker on your local machine (Windows, Mac, or Linux), see Install Docker Engine.

🚀 Start up the server

  1. Ensure vm.max_map_count >= 262144:

To check the value of vm.max_map_count:

   > $ sysctl vm.max_map_count
   > ```
   >
   > Reset `vm.max_map_count` to a value at least 262144 if it is not.
   >
   > ```bash
   > # In this case, we set it to 262144:
   > $ sudo sysctl -w vm.max_map_count=262144
   > ```
   >
   > This change will be reset after a system reboot. To ensure your change remains permanent, add or update the `vm.max_map_count` value in **/etc/sysctl.conf** accordingly:
   >
   > ```bash
   > vm.max_map_count=262144
   > ```

2. Clone the repo:

   ```bash
   $ git clone https://github.com/infiniflow/ragflow.git
  1. Build the pre-built Docker images and start up the server:

The command below downloads the dev version Docker image for RAGFlow slim (dev-slim). Note that RAGFlow slim Docker images do not include embedding models or Python libraries and hence are approximately 1GB in size.

   $ cd ragflow/docker
   $ docker compose -f docker-compose.yml up -d
  • To download a RAGFlow slim Docker image of a specific version, update the RAGFlow_IMAGE variable in docker/.env to your desired version. For example, RAGFLOW_IMAGE=infiniflow/ragflow:v0.12.0-slim. After making this change, rerun the command above to initiate the download.
  • To download the dev version of RAGFlow Docker image including embedding models and Python libraries, update the RAGFlow_IMAGE variable in docker/.env to RAGFLOW_IMAGE=infiniflow/ragflow:dev. After making this change, rerun the command above to initiate the download.
  • To download a specific version of RAGFlow Docker image including embedding models and Python libraries, update the RAGFlow_IMAGE variable in docker/.env to your desired version. For example, RAGFLOW_IMAGE=infiniflow/ragflow:v0.12.0. After making this change, rerun the command above to initiate the download.

NOTE: A RAGFlow Docker image that includes embedding models and Python libraries is approximately 9GB in size and may take significantly longer time to load.

  1. Check the server status after having the server up and running:
   $ docker logs -f ragflow-server

The following output confirms a successful launch of the system:


         ____   ___    ______ ______ __               
        / __ \ /   |  / ____// ____// /____  _      __
       / /_/ // /| | / / __ / /_   / // __ \| | /| / /
      / _, _// ___ |/ /_/ // __/  / // /_/ /| |/ |/ / 
     /_/ |_|/_/  |_|\____//_/    /_/ \____/ |__/|__/ 

    * Running on all addresses (0.0.0.0)
    * Running on http://127.0.0.1:9380
    * Running on http://x.x.x.x:9380
    INFO:werkzeug:Press CTRL+C to quit

If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a network abnormal error because, at that moment, your RAGFlow may not be fully initialized.

  1. In your web browser, enter the IP address of your server and log in to RAGFlow. > With the default settings, you only need to enter http://IP_OF_YOUR_MACHINE (sans port number) as the default HTTP serving port 80 can be omitted when using the default configurations.
  2. In service_conf.yaml, select the desired LLM factory in user_default_llm and update the API_KEY field with the corresponding API key.

See llm_api_key_setup for more information.

The show is on!

🔧 Configurations

When it comes to system configurations, you will need to manage the following files:

You must ensure that changes to the .env file are in line with what are in the service_conf.yaml file.

The ./docker/README file provides a detailed description of the environment settings and service configurations, and you are REQUIRED to ensure that all environment settings listed in the ./docker/README file are aligned with the corresponding configurations in the service_conf.yaml file.

To update the default HTTP serving port (80), go to docker-compose.yml and change 80:80 to <YOUR_SERVING_PORT>:80.

Updates to the above configurations require a reboot of all containers to take effect:

> $ docker compose -f docker/docker-compose.yml up -d
> ```

## 🔧 Build a Docker image without embedding models

This image is approximately 1 GB in size and relies on external LLM and embedding services.

```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
pip3 install huggingface-hub nltk
python3 download_deps.py
docker build -f Dockerfile.slim -t infiniflow/ragflow:dev-slim .

🔧 Build a Docker image including embedding models

This image is approximately 9 GB in size. As it includes embedding models, it relies on external LLM services only.

git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
pip3 install huggingface-hub nltk
python3 download_deps.py
docker build -f Dockerfile -t infiniflow/ragflow:dev .

🔨 Launch service from source for development

  1. Install Poetry, or skip this step if it is already installed:

    curl -sSL https://install.python-poetry.org | python3 -
    
  2. Clone the source code and install Python dependencies:

    git clone https://github.com/infiniflow/ragflow.git
    cd ragflow/
    export POETRY_VIRTUALENVS_CREATE=true POETRY_VIRTUALENVS_IN_PROJECT=true
    ~/.local/bin/poetry install --sync --no-root # install RAGFlow dependent python modules
    
  3. Launch the dependent services (MinIO, Elasticsearch, Redis, and MySQL) using Docker Compose:

    docker compose -f docker/docker-compose-base.yml up -d
    

Add the following line to /etc/hosts to resolve all hosts specified in docker/service_conf.yaml to 127.0.0.1:

   127.0.0.1       es01 mysql minio redis

In docker/service_conf.yaml, update mysql port to 5455 and es port to 1200, as specified in docker/.env.

  1. If you cannot access HuggingFace, set the HF_ENDPOINT environment variable to use a mirror site:
   export HF_ENDPOINT=https://hf-mirror.com
  1. Launch backend service:

    source .venv/bin/activate
    export PYTHONPATH=$(pwd)
    bash docker/launch_backend_service.sh
    
  2. Install frontend dependencies:

    cd web
    npm install --force
    
  3. Configure frontend to update proxy.target in .umirc.ts to http://127.0.0.1:9380:

  4. Launch frontend service:

    npm run dev 
    

The following output confirms a successful launch of the system:

📚 Documentation

📜 Roadmap

See the RAGFlow Roadmap 2024

🏄 Community

🙌 Contributing

RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community. If you would like to be a part, review our Contribution Guidelines first.