You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419
  1. # -*- coding: utf-8 -*-
  2. import json
  3. import re
  4. from copy import deepcopy
  5. from elasticsearch_dsl import Q, Search
  6. from typing import List, Optional, Dict, Union
  7. from dataclasses import dataclass
  8. from rag.settings import es_logger
  9. from rag.utils import rmSpace
  10. from rag.nlp import rag_tokenizer, query
  11. import numpy as np
  12. def index_name(uid): return f"ragflow_{uid}"
  13. class Dealer:
  14. def __init__(self, es):
  15. self.qryr = query.EsQueryer(es)
  16. self.qryr.flds = [
  17. "title_tks^10",
  18. "title_sm_tks^5",
  19. "important_kwd^30",
  20. "important_tks^20",
  21. "content_ltks^2",
  22. "content_sm_ltks"]
  23. self.es = es
  24. @dataclass
  25. class SearchResult:
  26. total: int
  27. ids: List[str]
  28. query_vector: List[float] = None
  29. field: Optional[Dict] = None
  30. highlight: Optional[Dict] = None
  31. aggregation: Union[List, Dict, None] = None
  32. keywords: Optional[List[str]] = None
  33. group_docs: List[List] = None
  34. def _vector(self, txt, emb_mdl, sim=0.8, topk=10):
  35. qv, c = emb_mdl.encode_queries(txt)
  36. return {
  37. "field": "q_%d_vec" % len(qv),
  38. "k": topk,
  39. "similarity": sim,
  40. "num_candidates": topk * 2,
  41. "query_vector": [float(v) for v in qv]
  42. }
  43. def search(self, req, idxnm, emb_mdl=None):
  44. qst = req.get("question", "")
  45. bqry, keywords = self.qryr.question(qst)
  46. def add_filters(bqry):
  47. nonlocal req
  48. if req.get("kb_ids"):
  49. bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
  50. if req.get("doc_ids"):
  51. bqry.filter.append(Q("terms", doc_id=req["doc_ids"]))
  52. if "available_int" in req:
  53. if req["available_int"] == 0:
  54. bqry.filter.append(Q("range", available_int={"lt": 1}))
  55. else:
  56. bqry.filter.append(
  57. Q("bool", must_not=Q("range", available_int={"lt": 1})))
  58. return bqry
  59. bqry = add_filters(bqry)
  60. bqry.boost = 0.05
  61. s = Search()
  62. pg = int(req.get("page", 1)) - 1
  63. ps = int(req.get("size", 1000))
  64. topk = int(req.get("topk", 1024))
  65. src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id", "title_tks", "important_kwd",
  66. "image_id", "doc_id", "q_512_vec", "q_768_vec", "position_int",
  67. "q_1024_vec", "q_1536_vec", "available_int", "content_with_weight"])
  68. s = s.query(bqry)[pg * ps:(pg + 1) * ps]
  69. s = s.highlight("content_ltks")
  70. s = s.highlight("title_ltks")
  71. if not qst:
  72. if not req.get("sort"):
  73. s = s.sort(
  74. {"create_time": {"order": "desc", "unmapped_type": "date"}},
  75. {"create_timestamp_flt": {
  76. "order": "desc", "unmapped_type": "float"}}
  77. )
  78. else:
  79. s = s.sort(
  80. {"page_num_int": {"order": "asc", "unmapped_type": "float",
  81. "mode": "avg", "numeric_type": "double"}},
  82. {"top_int": {"order": "asc", "unmapped_type": "float",
  83. "mode": "avg", "numeric_type": "double"}},
  84. {"create_time": {"order": "desc", "unmapped_type": "date"}},
  85. {"create_timestamp_flt": {
  86. "order": "desc", "unmapped_type": "float"}}
  87. )
  88. if qst:
  89. s = s.highlight_options(
  90. fragment_size=120,
  91. number_of_fragments=5,
  92. boundary_scanner_locale="zh-CN",
  93. boundary_scanner="SENTENCE",
  94. boundary_chars=",./;:\\!(),。?:!……()——、"
  95. )
  96. s = s.to_dict()
  97. q_vec = []
  98. if req.get("vector"):
  99. assert emb_mdl, "No embedding model selected"
  100. s["knn"] = self._vector(
  101. qst, emb_mdl, req.get(
  102. "similarity", 0.1), topk)
  103. s["knn"]["filter"] = bqry.to_dict()
  104. if "highlight" in s:
  105. del s["highlight"]
  106. q_vec = s["knn"]["query_vector"]
  107. es_logger.info("【Q】: {}".format(json.dumps(s)))
  108. res = self.es.search(deepcopy(s), idxnm=idxnm, timeout="600s", src=src)
  109. es_logger.info("TOTAL: {}".format(self.es.getTotal(res)))
  110. if self.es.getTotal(res) == 0 and "knn" in s:
  111. bqry, _ = self.qryr.question(qst, min_match="10%")
  112. bqry = add_filters(bqry)
  113. s["query"] = bqry.to_dict()
  114. s["knn"]["filter"] = bqry.to_dict()
  115. s["knn"]["similarity"] = 0.17
  116. res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
  117. es_logger.info("【Q】: {}".format(json.dumps(s)))
  118. kwds = set([])
  119. for k in keywords:
  120. kwds.add(k)
  121. for kk in rag_tokenizer.fine_grained_tokenize(k).split(" "):
  122. if len(kk) < 2:
  123. continue
  124. if kk in kwds:
  125. continue
  126. kwds.add(kk)
  127. aggs = self.getAggregation(res, "docnm_kwd")
  128. return self.SearchResult(
  129. total=self.es.getTotal(res),
  130. ids=self.es.getDocIds(res),
  131. query_vector=q_vec,
  132. aggregation=aggs,
  133. highlight=self.getHighlight(res),
  134. field=self.getFields(res, src),
  135. keywords=list(kwds)
  136. )
  137. def getAggregation(self, res, g):
  138. if not "aggregations" in res or "aggs_" + g not in res["aggregations"]:
  139. return
  140. bkts = res["aggregations"]["aggs_" + g]["buckets"]
  141. return [(b["key"], b["doc_count"]) for b in bkts]
  142. def getHighlight(self, res):
  143. def rmspace(line):
  144. eng = set(list("qwertyuioplkjhgfdsazxcvbnm"))
  145. r = []
  146. for t in line.split(" "):
  147. if not t:
  148. continue
  149. if len(r) > 0 and len(
  150. t) > 0 and r[-1][-1] in eng and t[0] in eng:
  151. r.append(" ")
  152. r.append(t)
  153. r = "".join(r)
  154. return r
  155. ans = {}
  156. for d in res["hits"]["hits"]:
  157. hlts = d.get("highlight")
  158. if not hlts:
  159. continue
  160. ans[d["_id"]] = "".join([a for a in list(hlts.items())[0][1]])
  161. return ans
  162. def getFields(self, sres, flds):
  163. res = {}
  164. if not flds:
  165. return {}
  166. for d in self.es.getSource(sres):
  167. m = {n: d.get(n) for n in flds if d.get(n) is not None}
  168. for n, v in m.items():
  169. if isinstance(v, type([])):
  170. m[n] = "\t".join([str(vv) if not isinstance(
  171. vv, list) else "\t".join([str(vvv) for vvv in vv]) for vv in v])
  172. continue
  173. if not isinstance(v, type("")):
  174. m[n] = str(m[n])
  175. if n.find("tks") > 0:
  176. m[n] = rmSpace(m[n])
  177. if m:
  178. res[d["id"]] = m
  179. return res
  180. @staticmethod
  181. def trans2floats(txt):
  182. return [float(t) for t in txt.split("\t")]
  183. def insert_citations(self, answer, chunks, chunk_v,
  184. embd_mdl, tkweight=0.1, vtweight=0.9):
  185. assert len(chunks) == len(chunk_v)
  186. pieces = re.split(r"(```)", answer)
  187. if len(pieces) >= 3:
  188. i = 0
  189. pieces_ = []
  190. while i < len(pieces):
  191. if pieces[i] == "```":
  192. st = i
  193. i += 1
  194. while i < len(pieces) and pieces[i] != "```":
  195. i += 1
  196. if i < len(pieces):
  197. i += 1
  198. pieces_.append("".join(pieces[st: i]) + "\n")
  199. else:
  200. pieces_.extend(
  201. re.split(
  202. r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])",
  203. pieces[i]))
  204. i += 1
  205. pieces = pieces_
  206. else:
  207. pieces = re.split(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", answer)
  208. for i in range(1, len(pieces)):
  209. if re.match(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", pieces[i]):
  210. pieces[i - 1] += pieces[i][0]
  211. pieces[i] = pieces[i][1:]
  212. idx = []
  213. pieces_ = []
  214. for i, t in enumerate(pieces):
  215. if len(t) < 5:
  216. continue
  217. idx.append(i)
  218. pieces_.append(t)
  219. es_logger.info("{} => {}".format(answer, pieces_))
  220. if not pieces_:
  221. return answer, set([])
  222. ans_v, _ = embd_mdl.encode(pieces_)
  223. assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
  224. len(ans_v[0]), len(chunk_v[0]))
  225. chunks_tks = [rag_tokenizer.tokenize(self.qryr.rmWWW(ck)).split(" ")
  226. for ck in chunks]
  227. cites = {}
  228. thr = 0.63
  229. while thr>0.3 and len(cites.keys()) == 0 and pieces_ and chunks_tks:
  230. for i, a in enumerate(pieces_):
  231. sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i],
  232. chunk_v,
  233. rag_tokenizer.tokenize(
  234. self.qryr.rmWWW(pieces_[i])).split(" "),
  235. chunks_tks,
  236. tkweight, vtweight)
  237. mx = np.max(sim) * 0.99
  238. es_logger.info("{} SIM: {}".format(pieces_[i], mx))
  239. if mx < thr:
  240. continue
  241. cites[idx[i]] = list(
  242. set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4]
  243. thr *= 0.8
  244. res = ""
  245. seted = set([])
  246. for i, p in enumerate(pieces):
  247. res += p
  248. if i not in idx:
  249. continue
  250. if i not in cites:
  251. continue
  252. for c in cites[i]:
  253. assert int(c) < len(chunk_v)
  254. for c in cites[i]:
  255. if c in seted:
  256. continue
  257. res += f" ##{c}$$"
  258. seted.add(c)
  259. return res, seted
  260. def rerank(self, sres, query, tkweight=0.3,
  261. vtweight=0.7, cfield="content_ltks"):
  262. _, keywords = self.qryr.question(query)
  263. ins_embd = [
  264. Dealer.trans2floats(
  265. sres.field[i].get("q_%d_vec" % len(sres.query_vector), "\t".join(["0"] * len(sres.query_vector)))) for i in sres.ids]
  266. if not ins_embd:
  267. return [], [], []
  268. for i in sres.ids:
  269. if isinstance(sres.field[i].get("important_kwd", []), str):
  270. sres.field[i]["important_kwd"] = [sres.field[i]["important_kwd"]]
  271. ins_tw = []
  272. for i in sres.ids:
  273. content_ltks = sres.field[i][cfield].split(" ")
  274. title_tks = [t for t in sres.field[i].get("title_tks", "").split(" ") if t]
  275. important_kwd = sres.field[i].get("important_kwd", [])
  276. tks = content_ltks + title_tks + important_kwd
  277. ins_tw.append(tks)
  278. sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
  279. ins_embd,
  280. keywords,
  281. ins_tw, tkweight, vtweight)
  282. return sim, tksim, vtsim
  283. def hybrid_similarity(self, ans_embd, ins_embd, ans, inst):
  284. return self.qryr.hybrid_similarity(ans_embd,
  285. ins_embd,
  286. rag_tokenizer.tokenize(ans).split(" "),
  287. rag_tokenizer.tokenize(inst).split(" "))
  288. def retrieval(self, question, embd_mdl, tenant_id, kb_ids, page, page_size, similarity_threshold=0.2,
  289. vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True):
  290. ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
  291. if not question:
  292. return ranks
  293. req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": page_size,
  294. "question": question, "vector": True, "topk": top,
  295. "similarity": similarity_threshold}
  296. sres = self.search(req, index_name(tenant_id), embd_mdl)
  297. sim, tsim, vsim = self.rerank(
  298. sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
  299. idx = np.argsort(sim * -1)
  300. dim = len(sres.query_vector)
  301. start_idx = (page - 1) * page_size
  302. for i in idx:
  303. if sim[i] < similarity_threshold:
  304. break
  305. ranks["total"] += 1
  306. start_idx -= 1
  307. if start_idx >= 0:
  308. continue
  309. if len(ranks["chunks"]) >= page_size:
  310. if aggs:
  311. continue
  312. break
  313. id = sres.ids[i]
  314. dnm = sres.field[id]["docnm_kwd"]
  315. did = sres.field[id]["doc_id"]
  316. d = {
  317. "chunk_id": id,
  318. "content_ltks": sres.field[id]["content_ltks"],
  319. "content_with_weight": sres.field[id]["content_with_weight"],
  320. "doc_id": sres.field[id]["doc_id"],
  321. "docnm_kwd": dnm,
  322. "kb_id": sres.field[id]["kb_id"],
  323. "important_kwd": sres.field[id].get("important_kwd", []),
  324. "img_id": sres.field[id].get("img_id", ""),
  325. "similarity": sim[i],
  326. "vector_similarity": vsim[i],
  327. "term_similarity": tsim[i],
  328. "vector": self.trans2floats(sres.field[id].get("q_%d_vec" % dim, "\t".join(["0"] * dim))),
  329. "positions": sres.field[id].get("position_int", "").split("\t")
  330. }
  331. if len(d["positions"]) % 5 == 0:
  332. poss = []
  333. for i in range(0, len(d["positions"]), 5):
  334. poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]),
  335. float(d["positions"][i + 3]), float(d["positions"][i + 4])])
  336. d["positions"] = poss
  337. ranks["chunks"].append(d)
  338. if dnm not in ranks["doc_aggs"]:
  339. ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
  340. ranks["doc_aggs"][dnm]["count"] += 1
  341. ranks["doc_aggs"] = [{"doc_name": k,
  342. "doc_id": v["doc_id"],
  343. "count": v["count"]} for k,
  344. v in sorted(ranks["doc_aggs"].items(),
  345. key=lambda x:x[1]["count"] * -1)]
  346. return ranks
  347. def sql_retrieval(self, sql, fetch_size=128, format="json"):
  348. from api.settings import chat_logger
  349. sql = re.sub(r"[ `]+", " ", sql)
  350. sql = sql.replace("%", "")
  351. es_logger.info(f"Get es sql: {sql}")
  352. replaces = []
  353. for r in re.finditer(r" ([a-z_]+_l?tks)( like | ?= ?)'([^']+)'", sql):
  354. fld, v = r.group(1), r.group(3)
  355. match = " MATCH({}, '{}', 'operator=OR;minimum_should_match=30%') ".format(
  356. fld, rag_tokenizer.fine_grained_tokenize(rag_tokenizer.tokenize(v)))
  357. replaces.append(
  358. ("{}{}'{}'".format(
  359. r.group(1),
  360. r.group(2),
  361. r.group(3)),
  362. match))
  363. for p, r in replaces:
  364. sql = sql.replace(p, r, 1)
  365. chat_logger.info(f"To es: {sql}")
  366. try:
  367. tbl = self.es.sql(sql, fetch_size, format)
  368. return tbl
  369. except Exception as e:
  370. chat_logger.error(f"SQL failure: {sql} =>" + str(e))
  371. return {"error": str(e)}
  372. def chunk_list(self, doc_id, tenant_id, max_count=1024, fields=["docnm_kwd", "content_with_weight", "img_id"]):
  373. s = Search()
  374. s = s.query(Q("match", doc_id=doc_id))[0:max_count]
  375. s = s.to_dict()
  376. es_res = self.es.search(s, idxnm=index_name(tenant_id), timeout="600s", src=fields)
  377. res = []
  378. for index, chunk in enumerate(es_res['hits']['hits']):
  379. res.append({fld: chunk['_source'].get(fld) for fld in fields})
  380. return res