Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.

chat.py 14KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. from flask import request
  17. from api import settings
  18. from api.db import StatusEnum
  19. from api.db.services.dialog_service import DialogService
  20. from api.db.services.knowledgebase_service import KnowledgebaseService
  21. from api.db.services.llm_service import TenantLLMService
  22. from api.db.services.user_service import TenantService
  23. from api.utils import get_uuid
  24. from api.utils.api_utils import get_error_data_result, token_required
  25. from api.utils.api_utils import get_result
  26. @manager.route('/chats', methods=['POST']) # noqa: F821
  27. @token_required
  28. def create(tenant_id):
  29. req=request.json
  30. ids= req.get("dataset_ids")
  31. if not ids:
  32. return get_error_data_result(message="`dataset_ids` is required")
  33. for kb_id in ids:
  34. kbs = KnowledgebaseService.accessible(kb_id=kb_id,user_id=tenant_id)
  35. if not kbs:
  36. return get_error_data_result(f"You don't own the dataset {kb_id}")
  37. kbs = KnowledgebaseService.query(id=kb_id)
  38. kb = kbs[0]
  39. if kb.chunk_num == 0:
  40. return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
  41. kbs = KnowledgebaseService.get_by_ids(ids)
  42. embd_count = list(set([kb.embd_id for kb in kbs]))
  43. if len(embd_count) != 1:
  44. return get_result(message='Datasets use different embedding models."',code=settings.RetCode.AUTHENTICATION_ERROR)
  45. req["kb_ids"] = ids
  46. # llm
  47. llm = req.get("llm")
  48. if llm:
  49. if "model_name" in llm:
  50. req["llm_id"] = llm.pop("model_name")
  51. if not TenantLLMService.query(tenant_id=tenant_id,llm_name=req["llm_id"],model_type="chat"):
  52. return get_error_data_result(f"`model_name` {req.get('llm_id')} doesn't exist")
  53. req["llm_setting"] = req.pop("llm")
  54. e, tenant = TenantService.get_by_id(tenant_id)
  55. if not e:
  56. return get_error_data_result(message="Tenant not found!")
  57. # prompt
  58. prompt = req.get("prompt")
  59. key_mapping = {"parameters": "variables",
  60. "prologue": "opener",
  61. "quote": "show_quote",
  62. "system": "prompt",
  63. "rerank_id": "rerank_model",
  64. "vector_similarity_weight": "keywords_similarity_weight"}
  65. key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
  66. if prompt:
  67. for new_key, old_key in key_mapping.items():
  68. if old_key in prompt:
  69. prompt[new_key] = prompt.pop(old_key)
  70. for key in key_list:
  71. if key in prompt:
  72. req[key] = prompt.pop(key)
  73. req["prompt_config"] = req.pop("prompt")
  74. # init
  75. req["id"] = get_uuid()
  76. req["description"] = req.get("description", "A helpful Assistant")
  77. req["icon"] = req.get("avatar", "")
  78. req["top_n"] = req.get("top_n", 6)
  79. req["top_k"] = req.get("top_k", 1024)
  80. req["rerank_id"] = req.get("rerank_id", "")
  81. if req.get("rerank_id"):
  82. value_rerank_model = ["BAAI/bge-reranker-v2-m3","maidalun1020/bce-reranker-base_v1"]
  83. if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id,llm_name=req.get("rerank_id"),model_type="rerank"):
  84. return get_error_data_result(f"`rerank_model` {req.get('rerank_id')} doesn't exist")
  85. if not req.get("llm_id"):
  86. req["llm_id"] = tenant.llm_id
  87. if not req.get("name"):
  88. return get_error_data_result(message="`name` is required.")
  89. if DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value):
  90. return get_error_data_result(message="Duplicated chat name in creating chat.")
  91. # tenant_id
  92. if req.get("tenant_id"):
  93. return get_error_data_result(message="`tenant_id` must not be provided.")
  94. req["tenant_id"] = tenant_id
  95. # prompt more parameter
  96. default_prompt = {
  97. "system": """You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history.
  98. Here is the knowledge base:
  99. {knowledge}
  100. The above is the knowledge base.""",
  101. "prologue": "Hi! I'm your assistant, what can I do for you?",
  102. "parameters": [
  103. {"key": "knowledge", "optional": False}
  104. ],
  105. "empty_response": "Sorry! No relevant content was found in the knowledge base!",
  106. "quote":True,
  107. "tts":False,
  108. "refine_multiturn":True
  109. }
  110. key_list_2 = ["system", "prologue", "parameters", "empty_response","quote","tts","refine_multiturn"]
  111. if "prompt_config" not in req:
  112. req['prompt_config'] = {}
  113. for key in key_list_2:
  114. temp = req['prompt_config'].get(key)
  115. if (not temp and key == 'system') or (key not in req["prompt_config"]):
  116. req['prompt_config'][key] = default_prompt[key]
  117. for p in req['prompt_config']["parameters"]:
  118. if p["optional"]:
  119. continue
  120. if req['prompt_config']["system"].find("{%s}" % p["key"]) < 0:
  121. return get_error_data_result(
  122. message="Parameter '{}' is not used".format(p["key"]))
  123. # save
  124. if not DialogService.save(**req):
  125. return get_error_data_result(message="Fail to new a chat!")
  126. # response
  127. e, res = DialogService.get_by_id(req["id"])
  128. if not e:
  129. return get_error_data_result(message="Fail to new a chat!")
  130. res = res.to_json()
  131. renamed_dict = {}
  132. for key, value in res["prompt_config"].items():
  133. new_key = key_mapping.get(key, key)
  134. renamed_dict[new_key] = value
  135. res["prompt"] = renamed_dict
  136. del res["prompt_config"]
  137. new_dict = {"similarity_threshold": res["similarity_threshold"],
  138. "keywords_similarity_weight": res["vector_similarity_weight"],
  139. "top_n": res["top_n"],
  140. "rerank_model": res['rerank_id']}
  141. res["prompt"].update(new_dict)
  142. for key in key_list:
  143. del res[key]
  144. res["llm"] = res.pop("llm_setting")
  145. res["llm"]["model_name"] = res.pop("llm_id")
  146. del res["kb_ids"]
  147. res["dataset_ids"] = req["dataset_ids"]
  148. res["avatar"] = res.pop("icon")
  149. return get_result(data=res)
  150. @manager.route('/chats/<chat_id>', methods=['PUT']) # noqa: F821
  151. @token_required
  152. def update(tenant_id,chat_id):
  153. if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
  154. return get_error_data_result(message='You do not own the chat')
  155. req =request.json
  156. ids = req.get("dataset_ids")
  157. if "show_quotation" in req:
  158. req["do_refer"]=req.pop("show_quotation")
  159. if "dataset_ids" in req:
  160. if not ids:
  161. return get_error_data_result("`dataset_ids` can't be empty")
  162. if ids:
  163. for kb_id in ids:
  164. kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id)
  165. if not kbs:
  166. return get_error_data_result(f"You don't own the dataset {kb_id}")
  167. kbs = KnowledgebaseService.query(id=kb_id)
  168. kb = kbs[0]
  169. if kb.chunk_num == 0:
  170. return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
  171. kbs = KnowledgebaseService.get_by_ids(ids)
  172. embd_count=list(set([kb.embd_id for kb in kbs]))
  173. if len(embd_count) != 1 :
  174. return get_result(
  175. message='Datasets use different embedding models."',
  176. code=settings.RetCode.AUTHENTICATION_ERROR)
  177. req["kb_ids"] = ids
  178. llm = req.get("llm")
  179. if llm:
  180. if "model_name" in llm:
  181. req["llm_id"] = llm.pop("model_name")
  182. if not TenantLLMService.query(tenant_id=tenant_id,llm_name=req["llm_id"],model_type="chat"):
  183. return get_error_data_result(f"`model_name` {req.get('llm_id')} doesn't exist")
  184. req["llm_setting"] = req.pop("llm")
  185. e, tenant = TenantService.get_by_id(tenant_id)
  186. if not e:
  187. return get_error_data_result(message="Tenant not found!")
  188. # prompt
  189. prompt = req.get("prompt")
  190. key_mapping = {"parameters": "variables",
  191. "prologue": "opener",
  192. "quote": "show_quote",
  193. "system": "prompt",
  194. "rerank_id": "rerank_model",
  195. "vector_similarity_weight": "keywords_similarity_weight"}
  196. key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
  197. if prompt:
  198. for new_key, old_key in key_mapping.items():
  199. if old_key in prompt:
  200. prompt[new_key] = prompt.pop(old_key)
  201. for key in key_list:
  202. if key in prompt:
  203. req[key] = prompt.pop(key)
  204. req["prompt_config"] = req.pop("prompt")
  205. e, res = DialogService.get_by_id(chat_id)
  206. res = res.to_json()
  207. if req.get("rerank_id"):
  208. value_rerank_model = ["BAAI/bge-reranker-v2-m3","maidalun1020/bce-reranker-base_v1"]
  209. if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id,llm_name=req.get("rerank_id"),model_type="rerank"):
  210. return get_error_data_result(f"`rerank_model` {req.get('rerank_id')} doesn't exist")
  211. if "name" in req:
  212. if not req.get("name"):
  213. return get_error_data_result(message="`name` is not empty.")
  214. if req["name"].lower() != res["name"].lower() \
  215. and len(
  216. DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)) > 0:
  217. return get_error_data_result(message="Duplicated chat name in updating dataset.")
  218. if "prompt_config" in req:
  219. res["prompt_config"].update(req["prompt_config"])
  220. for p in res["prompt_config"]["parameters"]:
  221. if p["optional"]:
  222. continue
  223. if res["prompt_config"]["system"].find("{%s}" % p["key"]) < 0:
  224. return get_error_data_result(message="Parameter '{}' is not used".format(p["key"]))
  225. if "llm_setting" in req:
  226. res["llm_setting"].update(req["llm_setting"])
  227. req["prompt_config"] = res["prompt_config"]
  228. req["llm_setting"] = res["llm_setting"]
  229. # avatar
  230. if "avatar" in req:
  231. req["icon"] = req.pop("avatar")
  232. if "dataset_ids" in req:
  233. req.pop("dataset_ids")
  234. if not DialogService.update_by_id(chat_id, req):
  235. return get_error_data_result(message="Chat not found!")
  236. return get_result()
  237. @manager.route('/chats', methods=['DELETE']) # noqa: F821
  238. @token_required
  239. def delete(tenant_id):
  240. req = request.json
  241. if not req:
  242. ids=None
  243. else:
  244. ids=req.get("ids")
  245. if not ids:
  246. id_list = []
  247. dias=DialogService.query(tenant_id=tenant_id,status=StatusEnum.VALID.value)
  248. for dia in dias:
  249. id_list.append(dia.id)
  250. else:
  251. id_list=ids
  252. for id in id_list:
  253. if not DialogService.query(tenant_id=tenant_id, id=id, status=StatusEnum.VALID.value):
  254. return get_error_data_result(message=f"You don't own the chat {id}")
  255. temp_dict = {"status": StatusEnum.INVALID.value}
  256. DialogService.update_by_id(id, temp_dict)
  257. return get_result()
  258. @manager.route('/chats', methods=['GET']) # noqa: F821
  259. @token_required
  260. def list_chat(tenant_id):
  261. id = request.args.get("id")
  262. name = request.args.get("name")
  263. if id or name:
  264. chat = DialogService.query(id=id, name=name, status=StatusEnum.VALID.value, tenant_id=tenant_id)
  265. if not chat:
  266. return get_error_data_result(message="The chat doesn't exist")
  267. page_number = int(request.args.get("page", 1))
  268. items_per_page = int(request.args.get("page_size", 30))
  269. orderby = request.args.get("orderby", "create_time")
  270. if request.args.get("desc") == "False" or request.args.get("desc") == "false":
  271. desc = False
  272. else:
  273. desc = True
  274. chats = DialogService.get_list(tenant_id,page_number,items_per_page,orderby,desc,id,name)
  275. if not chats:
  276. return get_result(data=[])
  277. list_assts = []
  278. renamed_dict = {}
  279. key_mapping = {"parameters": "variables",
  280. "prologue": "opener",
  281. "quote": "show_quote",
  282. "system": "prompt",
  283. "rerank_id": "rerank_model",
  284. "vector_similarity_weight": "keywords_similarity_weight",
  285. "do_refer":"show_quotation"}
  286. key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
  287. for res in chats:
  288. for key, value in res["prompt_config"].items():
  289. new_key = key_mapping.get(key, key)
  290. renamed_dict[new_key] = value
  291. res["prompt"] = renamed_dict
  292. del res["prompt_config"]
  293. new_dict = {"similarity_threshold": res["similarity_threshold"],
  294. "keywords_similarity_weight": res["vector_similarity_weight"],
  295. "top_n": res["top_n"],
  296. "rerank_model": res['rerank_id']}
  297. res["prompt"].update(new_dict)
  298. for key in key_list:
  299. del res[key]
  300. res["llm"] = res.pop("llm_setting")
  301. res["llm"]["model_name"] = res.pop("llm_id")
  302. kb_list = []
  303. for kb_id in res["kb_ids"]:
  304. kb = KnowledgebaseService.query(id=kb_id)
  305. if not kb :
  306. return get_error_data_result(message=f"Don't exist the kb {kb_id}")
  307. kb_list.append(kb[0].to_json())
  308. del res["kb_ids"]
  309. res["datasets"] = kb_list
  310. res["avatar"] = res.pop("icon")
  311. list_assts.append(res)
  312. return get_result(data=list_assts)