Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

embedding_model.py 34KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import json
  17. import logging
  18. import os
  19. import re
  20. import threading
  21. from abc import ABC
  22. from urllib.parse import urljoin
  23. import dashscope
  24. import google.generativeai as genai
  25. import numpy as np
  26. import requests
  27. from huggingface_hub import snapshot_download
  28. from ollama import Client
  29. from openai import OpenAI
  30. from zhipuai import ZhipuAI
  31. from api import settings
  32. from api.utils.file_utils import get_home_cache_dir
  33. from api.utils.log_utils import log_exception
  34. from rag.utils import num_tokens_from_string, truncate
  35. class Base(ABC):
  36. def __init__(self, key, model_name):
  37. pass
  38. def encode(self, texts: list):
  39. raise NotImplementedError("Please implement encode method!")
  40. def encode_queries(self, text: str):
  41. raise NotImplementedError("Please implement encode method!")
  42. def total_token_count(self, resp):
  43. try:
  44. return resp.usage.total_tokens
  45. except Exception:
  46. pass
  47. try:
  48. return resp["usage"]["total_tokens"]
  49. except Exception:
  50. pass
  51. return 0
  52. class DefaultEmbedding(Base):
  53. _FACTORY_NAME = "BAAI"
  54. _model = None
  55. _model_name = ""
  56. _model_lock = threading.Lock()
  57. def __init__(self, key, model_name, **kwargs):
  58. """
  59. If you have trouble downloading HuggingFace models, -_^ this might help!!
  60. For Linux:
  61. export HF_ENDPOINT=https://hf-mirror.com
  62. For Windows:
  63. Good luck
  64. ^_-
  65. """
  66. if not settings.LIGHTEN:
  67. input_cuda_visible_devices = None
  68. with DefaultEmbedding._model_lock:
  69. import torch
  70. from FlagEmbedding import FlagModel
  71. if "CUDA_VISIBLE_DEVICES" in os.environ:
  72. input_cuda_visible_devices = os.environ["CUDA_VISIBLE_DEVICES"]
  73. os.environ["CUDA_VISIBLE_DEVICES"] = "0" # handle some issues with multiple GPUs when initializing the model
  74. if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
  75. try:
  76. DefaultEmbedding._model = FlagModel(
  77. os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
  78. query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
  79. use_fp16=torch.cuda.is_available(),
  80. )
  81. DefaultEmbedding._model_name = model_name
  82. except Exception:
  83. model_dir = snapshot_download(
  84. repo_id="BAAI/bge-large-zh-v1.5", local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), local_dir_use_symlinks=False
  85. )
  86. DefaultEmbedding._model = FlagModel(model_dir, query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", use_fp16=torch.cuda.is_available())
  87. finally:
  88. if input_cuda_visible_devices:
  89. # restore CUDA_VISIBLE_DEVICES
  90. os.environ["CUDA_VISIBLE_DEVICES"] = input_cuda_visible_devices
  91. self._model = DefaultEmbedding._model
  92. self._model_name = DefaultEmbedding._model_name
  93. def encode(self, texts: list):
  94. batch_size = 16
  95. texts = [truncate(t, 2048) for t in texts]
  96. token_count = 0
  97. for t in texts:
  98. token_count += num_tokens_from_string(t)
  99. ress = None
  100. for i in range(0, len(texts), batch_size):
  101. if ress is None:
  102. ress = self._model.encode(texts[i : i + batch_size], convert_to_numpy=True)
  103. else:
  104. ress = np.concatenate((ress, self._model.encode(texts[i : i + batch_size], convert_to_numpy=True)), axis=0)
  105. return ress, token_count
  106. def encode_queries(self, text: str):
  107. token_count = num_tokens_from_string(text)
  108. return self._model.encode_queries([text], convert_to_numpy=False)[0][0].cpu().numpy(), token_count
  109. class OpenAIEmbed(Base):
  110. _FACTORY_NAME = "OpenAI"
  111. def __init__(self, key, model_name="text-embedding-ada-002", base_url="https://api.openai.com/v1"):
  112. if not base_url:
  113. base_url = "https://api.openai.com/v1"
  114. self.client = OpenAI(api_key=key, base_url=base_url)
  115. self.model_name = model_name
  116. def encode(self, texts: list):
  117. # OpenAI requires batch size <=16
  118. batch_size = 16
  119. texts = [truncate(t, 8191) for t in texts]
  120. ress = []
  121. total_tokens = 0
  122. for i in range(0, len(texts), batch_size):
  123. res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
  124. try:
  125. ress.extend([d.embedding for d in res.data])
  126. total_tokens += self.total_token_count(res)
  127. except Exception as _e:
  128. log_exception(_e, res)
  129. return np.array(ress), total_tokens
  130. def encode_queries(self, text):
  131. res = self.client.embeddings.create(input=[truncate(text, 8191)], model=self.model_name)
  132. return np.array(res.data[0].embedding), self.total_token_count(res)
  133. class LocalAIEmbed(Base):
  134. _FACTORY_NAME = "LocalAI"
  135. def __init__(self, key, model_name, base_url):
  136. if not base_url:
  137. raise ValueError("Local embedding model url cannot be None")
  138. base_url = urljoin(base_url, "v1")
  139. self.client = OpenAI(api_key="empty", base_url=base_url)
  140. self.model_name = model_name.split("___")[0]
  141. def encode(self, texts: list):
  142. batch_size = 16
  143. ress = []
  144. for i in range(0, len(texts), batch_size):
  145. res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
  146. try:
  147. ress.extend([d.embedding for d in res.data])
  148. except Exception as _e:
  149. log_exception(_e, res)
  150. # local embedding for LmStudio donot count tokens
  151. return np.array(ress), 1024
  152. def encode_queries(self, text):
  153. embds, cnt = self.encode([text])
  154. return np.array(embds[0]), cnt
  155. class AzureEmbed(OpenAIEmbed):
  156. _FACTORY_NAME = "Azure-OpenAI"
  157. def __init__(self, key, model_name, **kwargs):
  158. from openai.lib.azure import AzureOpenAI
  159. api_key = json.loads(key).get("api_key", "")
  160. api_version = json.loads(key).get("api_version", "2024-02-01")
  161. self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
  162. self.model_name = model_name
  163. class BaiChuanEmbed(OpenAIEmbed):
  164. _FACTORY_NAME = "BaiChuan"
  165. def __init__(self, key, model_name="Baichuan-Text-Embedding", base_url="https://api.baichuan-ai.com/v1"):
  166. if not base_url:
  167. base_url = "https://api.baichuan-ai.com/v1"
  168. super().__init__(key, model_name, base_url)
  169. class QWenEmbed(Base):
  170. _FACTORY_NAME = "Tongyi-Qianwen"
  171. def __init__(self, key, model_name="text_embedding_v2", **kwargs):
  172. self.key = key
  173. self.model_name = model_name
  174. def encode(self, texts: list):
  175. import time
  176. import dashscope
  177. batch_size = 4
  178. res = []
  179. token_count = 0
  180. texts = [truncate(t, 2048) for t in texts]
  181. for i in range(0, len(texts), batch_size):
  182. retry_max = 5
  183. resp = dashscope.TextEmbedding.call(model=self.model_name, input=texts[i : i + batch_size], api_key=self.key, text_type="document")
  184. while (resp["output"] is None or resp["output"].get("embeddings") is None) and retry_max > 0:
  185. time.sleep(10)
  186. resp = dashscope.TextEmbedding.call(model=self.model_name, input=texts[i : i + batch_size], api_key=self.key, text_type="document")
  187. retry_max -= 1
  188. if retry_max == 0 and (resp["output"] is None or resp["output"].get("embeddings") is None):
  189. if resp.get("message"):
  190. log_exception(ValueError(f"Retry_max reached, calling embedding model failed: {resp['message']}"))
  191. else:
  192. log_exception(ValueError("Retry_max reached, calling embedding model failed"))
  193. raise
  194. try:
  195. embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
  196. for e in resp["output"]["embeddings"]:
  197. embds[e["text_index"]] = e["embedding"]
  198. res.extend(embds)
  199. token_count += self.total_token_count(resp)
  200. except Exception as _e:
  201. log_exception(_e, resp)
  202. raise
  203. return np.array(res), token_count
  204. def encode_queries(self, text):
  205. resp = dashscope.TextEmbedding.call(model=self.model_name, input=text[:2048], api_key=self.key, text_type="query")
  206. try:
  207. return np.array(resp["output"]["embeddings"][0]["embedding"]), self.total_token_count(resp)
  208. except Exception as _e:
  209. log_exception(_e, resp)
  210. class ZhipuEmbed(Base):
  211. _FACTORY_NAME = "ZHIPU-AI"
  212. def __init__(self, key, model_name="embedding-2", **kwargs):
  213. self.client = ZhipuAI(api_key=key)
  214. self.model_name = model_name
  215. def encode(self, texts: list):
  216. arr = []
  217. tks_num = 0
  218. MAX_LEN = -1
  219. if self.model_name.lower() == "embedding-2":
  220. MAX_LEN = 512
  221. if self.model_name.lower() == "embedding-3":
  222. MAX_LEN = 3072
  223. if MAX_LEN > 0:
  224. texts = [truncate(t, MAX_LEN) for t in texts]
  225. for txt in texts:
  226. res = self.client.embeddings.create(input=txt, model=self.model_name)
  227. try:
  228. arr.append(res.data[0].embedding)
  229. tks_num += self.total_token_count(res)
  230. except Exception as _e:
  231. log_exception(_e, res)
  232. return np.array(arr), tks_num
  233. def encode_queries(self, text):
  234. res = self.client.embeddings.create(input=text, model=self.model_name)
  235. try:
  236. return np.array(res.data[0].embedding), self.total_token_count(res)
  237. except Exception as _e:
  238. log_exception(_e, res)
  239. class OllamaEmbed(Base):
  240. _FACTORY_NAME = "Ollama"
  241. _special_tokens = ["<|endoftext|>"]
  242. def __init__(self, key, model_name, **kwargs):
  243. self.client = Client(host=kwargs["base_url"]) if not key or key == "x" else Client(host=kwargs["base_url"], headers={"Authorization": f"Bearer {key}"})
  244. self.model_name = model_name
  245. self.keep_alive = kwargs.get("ollama_keep_alive", int(os.environ.get("OLLAMA_KEEP_ALIVE", -1)))
  246. def encode(self, texts: list):
  247. arr = []
  248. tks_num = 0
  249. for txt in texts:
  250. # remove special tokens if they exist base on regex in one request
  251. for token in OllamaEmbed._special_tokens:
  252. txt = txt.replace(token, "")
  253. res = self.client.embeddings(prompt=txt, model=self.model_name, options={"use_mmap": True}, keep_alive=self.keep_alive)
  254. try:
  255. arr.append(res["embedding"])
  256. except Exception as _e:
  257. log_exception(_e, res)
  258. tks_num += 128
  259. return np.array(arr), tks_num
  260. def encode_queries(self, text):
  261. # remove special tokens if they exist
  262. for token in OllamaEmbed._special_tokens:
  263. text = text.replace(token, "")
  264. res = self.client.embeddings(prompt=text, model=self.model_name, options={"use_mmap": True}, keep_alive=self.keep_alive)
  265. try:
  266. return np.array(res["embedding"]), 128
  267. except Exception as _e:
  268. log_exception(_e, res)
  269. class FastEmbed(DefaultEmbedding):
  270. _FACTORY_NAME = "FastEmbed"
  271. def __init__(
  272. self,
  273. key: str | None = None,
  274. model_name: str = "BAAI/bge-small-en-v1.5",
  275. cache_dir: str | None = None,
  276. threads: int | None = None,
  277. **kwargs,
  278. ):
  279. if not settings.LIGHTEN:
  280. with FastEmbed._model_lock:
  281. from fastembed import TextEmbedding
  282. if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
  283. try:
  284. DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
  285. DefaultEmbedding._model_name = model_name
  286. except Exception:
  287. cache_dir = snapshot_download(
  288. repo_id="BAAI/bge-small-en-v1.5", local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), local_dir_use_symlinks=False
  289. )
  290. DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
  291. self._model = DefaultEmbedding._model
  292. self._model_name = model_name
  293. def encode(self, texts: list):
  294. # Using the internal tokenizer to encode the texts and get the total
  295. # number of tokens
  296. encodings = self._model.model.tokenizer.encode_batch(texts)
  297. total_tokens = sum(len(e) for e in encodings)
  298. embeddings = [e.tolist() for e in self._model.embed(texts, batch_size=16)]
  299. return np.array(embeddings), total_tokens
  300. def encode_queries(self, text: str):
  301. # Using the internal tokenizer to encode the texts and get the total
  302. # number of tokens
  303. encoding = self._model.model.tokenizer.encode(text)
  304. embedding = next(self._model.query_embed(text))
  305. return np.array(embedding), len(encoding.ids)
  306. class XinferenceEmbed(Base):
  307. _FACTORY_NAME = "Xinference"
  308. def __init__(self, key, model_name="", base_url=""):
  309. base_url = urljoin(base_url, "v1")
  310. self.client = OpenAI(api_key=key, base_url=base_url)
  311. self.model_name = model_name
  312. def encode(self, texts: list):
  313. batch_size = 16
  314. ress = []
  315. total_tokens = 0
  316. for i in range(0, len(texts), batch_size):
  317. res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
  318. try:
  319. ress.extend([d.embedding for d in res.data])
  320. total_tokens += self.total_token_count(res)
  321. except Exception as _e:
  322. log_exception(_e, res)
  323. return np.array(ress), total_tokens
  324. def encode_queries(self, text):
  325. res = self.client.embeddings.create(input=[text], model=self.model_name)
  326. try:
  327. return np.array(res.data[0].embedding), self.total_token_count(res)
  328. except Exception as _e:
  329. log_exception(_e, res)
  330. class YoudaoEmbed(Base):
  331. _FACTORY_NAME = "Youdao"
  332. _client = None
  333. def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
  334. if not settings.LIGHTEN and not YoudaoEmbed._client:
  335. from BCEmbedding import EmbeddingModel as qanthing
  336. try:
  337. logging.info("LOADING BCE...")
  338. YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(get_home_cache_dir(), "bce-embedding-base_v1"))
  339. except Exception:
  340. YoudaoEmbed._client = qanthing(model_name_or_path=model_name.replace("maidalun1020", "InfiniFlow"))
  341. def encode(self, texts: list):
  342. batch_size = 10
  343. res = []
  344. token_count = 0
  345. for t in texts:
  346. token_count += num_tokens_from_string(t)
  347. for i in range(0, len(texts), batch_size):
  348. embds = YoudaoEmbed._client.encode(texts[i : i + batch_size])
  349. res.extend(embds)
  350. return np.array(res), token_count
  351. def encode_queries(self, text):
  352. embds = YoudaoEmbed._client.encode([text])
  353. return np.array(embds[0]), num_tokens_from_string(text)
  354. class JinaEmbed(Base):
  355. _FACTORY_NAME = "Jina"
  356. def __init__(self, key, model_name="jina-embeddings-v3", base_url="https://api.jina.ai/v1/embeddings"):
  357. self.base_url = "https://api.jina.ai/v1/embeddings"
  358. self.headers = {"Content-Type": "application/json", "Authorization": f"Bearer {key}"}
  359. self.model_name = model_name
  360. def encode(self, texts: list):
  361. texts = [truncate(t, 8196) for t in texts]
  362. batch_size = 16
  363. ress = []
  364. token_count = 0
  365. for i in range(0, len(texts), batch_size):
  366. data = {"model": self.model_name, "input": texts[i : i + batch_size], "encoding_type": "float"}
  367. response = requests.post(self.base_url, headers=self.headers, json=data)
  368. try:
  369. res = response.json()
  370. ress.extend([d["embedding"] for d in res["data"]])
  371. token_count += self.total_token_count(res)
  372. except Exception as _e:
  373. log_exception(_e, response)
  374. return np.array(ress), token_count
  375. def encode_queries(self, text):
  376. embds, cnt = self.encode([text])
  377. return np.array(embds[0]), cnt
  378. class MistralEmbed(Base):
  379. _FACTORY_NAME = "Mistral"
  380. def __init__(self, key, model_name="mistral-embed", base_url=None):
  381. from mistralai.client import MistralClient
  382. self.client = MistralClient(api_key=key)
  383. self.model_name = model_name
  384. def encode(self, texts: list):
  385. texts = [truncate(t, 8196) for t in texts]
  386. batch_size = 16
  387. ress = []
  388. token_count = 0
  389. for i in range(0, len(texts), batch_size):
  390. res = self.client.embeddings(input=texts[i : i + batch_size], model=self.model_name)
  391. try:
  392. ress.extend([d.embedding for d in res.data])
  393. token_count += self.total_token_count(res)
  394. except Exception as _e:
  395. log_exception(_e, res)
  396. return np.array(ress), token_count
  397. def encode_queries(self, text):
  398. res = self.client.embeddings(input=[truncate(text, 8196)], model=self.model_name)
  399. try:
  400. return np.array(res.data[0].embedding), self.total_token_count(res)
  401. except Exception as _e:
  402. log_exception(_e, res)
  403. class BedrockEmbed(Base):
  404. _FACTORY_NAME = "Bedrock"
  405. def __init__(self, key, model_name, **kwargs):
  406. import boto3
  407. self.bedrock_ak = json.loads(key).get("bedrock_ak", "")
  408. self.bedrock_sk = json.loads(key).get("bedrock_sk", "")
  409. self.bedrock_region = json.loads(key).get("bedrock_region", "")
  410. self.model_name = model_name
  411. self.is_amazon = self.model_name.split(".")[0] == "amazon"
  412. self.is_cohere = self.model_name.split(".")[0] == "cohere"
  413. if self.bedrock_ak == "" or self.bedrock_sk == "" or self.bedrock_region == "":
  414. # Try to create a client using the default credentials (AWS_PROFILE, AWS_DEFAULT_REGION, etc.)
  415. self.client = boto3.client("bedrock-runtime")
  416. else:
  417. self.client = boto3.client(service_name="bedrock-runtime", region_name=self.bedrock_region, aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
  418. def encode(self, texts: list):
  419. texts = [truncate(t, 8196) for t in texts]
  420. embeddings = []
  421. token_count = 0
  422. for text in texts:
  423. if self.is_amazon:
  424. body = {"inputText": text}
  425. elif self.is_cohere:
  426. body = {"texts": [text], "input_type": "search_document"}
  427. response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
  428. try:
  429. model_response = json.loads(response["body"].read())
  430. embeddings.extend([model_response["embedding"]])
  431. token_count += num_tokens_from_string(text)
  432. except Exception as _e:
  433. log_exception(_e, response)
  434. return np.array(embeddings), token_count
  435. def encode_queries(self, text):
  436. embeddings = []
  437. token_count = num_tokens_from_string(text)
  438. if self.is_amazon:
  439. body = {"inputText": truncate(text, 8196)}
  440. elif self.is_cohere:
  441. body = {"texts": [truncate(text, 8196)], "input_type": "search_query"}
  442. response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
  443. try:
  444. model_response = json.loads(response["body"].read())
  445. embeddings.extend(model_response["embedding"])
  446. except Exception as _e:
  447. log_exception(_e, response)
  448. return np.array(embeddings), token_count
  449. class GeminiEmbed(Base):
  450. _FACTORY_NAME = "Gemini"
  451. def __init__(self, key, model_name="models/text-embedding-004", **kwargs):
  452. self.key = key
  453. self.model_name = "models/" + model_name
  454. def encode(self, texts: list):
  455. texts = [truncate(t, 2048) for t in texts]
  456. token_count = sum(num_tokens_from_string(text) for text in texts)
  457. genai.configure(api_key=self.key)
  458. batch_size = 16
  459. ress = []
  460. for i in range(0, len(texts), batch_size):
  461. result = genai.embed_content(model=self.model_name, content=texts[i : i + batch_size], task_type="retrieval_document", title="Embedding of single string")
  462. try:
  463. ress.extend(result["embedding"])
  464. except Exception as _e:
  465. log_exception(_e, result)
  466. return np.array(ress), token_count
  467. def encode_queries(self, text):
  468. genai.configure(api_key=self.key)
  469. result = genai.embed_content(model=self.model_name, content=truncate(text, 2048), task_type="retrieval_document", title="Embedding of single string")
  470. token_count = num_tokens_from_string(text)
  471. try:
  472. return np.array(result["embedding"]), token_count
  473. except Exception as _e:
  474. log_exception(_e, result)
  475. class NvidiaEmbed(Base):
  476. _FACTORY_NAME = "NVIDIA"
  477. def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings"):
  478. if not base_url:
  479. base_url = "https://integrate.api.nvidia.com/v1/embeddings"
  480. self.api_key = key
  481. self.base_url = base_url
  482. self.headers = {
  483. "accept": "application/json",
  484. "Content-Type": "application/json",
  485. "authorization": f"Bearer {self.api_key}",
  486. }
  487. self.model_name = model_name
  488. if model_name == "nvidia/embed-qa-4":
  489. self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings"
  490. self.model_name = "NV-Embed-QA"
  491. if model_name == "snowflake/arctic-embed-l":
  492. self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings"
  493. def encode(self, texts: list):
  494. batch_size = 16
  495. ress = []
  496. token_count = 0
  497. for i in range(0, len(texts), batch_size):
  498. payload = {
  499. "input": texts[i : i + batch_size],
  500. "input_type": "query",
  501. "model": self.model_name,
  502. "encoding_format": "float",
  503. "truncate": "END",
  504. }
  505. response = requests.post(self.base_url, headers=self.headers, json=payload)
  506. try:
  507. res = response.json()
  508. except Exception as _e:
  509. log_exception(_e, response)
  510. ress.extend([d["embedding"] for d in res["data"]])
  511. token_count += self.total_token_count(res)
  512. return np.array(ress), token_count
  513. def encode_queries(self, text):
  514. embds, cnt = self.encode([text])
  515. return np.array(embds[0]), cnt
  516. class LmStudioEmbed(LocalAIEmbed):
  517. _FACTORY_NAME = "LM-Studio"
  518. def __init__(self, key, model_name, base_url):
  519. if not base_url:
  520. raise ValueError("Local llm url cannot be None")
  521. base_url = urljoin(base_url, "v1")
  522. self.client = OpenAI(api_key="lm-studio", base_url=base_url)
  523. self.model_name = model_name
  524. class OpenAI_APIEmbed(OpenAIEmbed):
  525. _FACTORY_NAME = ["VLLM", "OpenAI-API-Compatible"]
  526. def __init__(self, key, model_name, base_url):
  527. if not base_url:
  528. raise ValueError("url cannot be None")
  529. base_url = urljoin(base_url, "v1")
  530. self.client = OpenAI(api_key=key, base_url=base_url)
  531. self.model_name = model_name.split("___")[0]
  532. class CoHereEmbed(Base):
  533. _FACTORY_NAME = "Cohere"
  534. def __init__(self, key, model_name, base_url=None):
  535. from cohere import Client
  536. self.client = Client(api_key=key)
  537. self.model_name = model_name
  538. def encode(self, texts: list):
  539. batch_size = 16
  540. ress = []
  541. token_count = 0
  542. for i in range(0, len(texts), batch_size):
  543. res = self.client.embed(
  544. texts=texts[i : i + batch_size],
  545. model=self.model_name,
  546. input_type="search_document",
  547. embedding_types=["float"],
  548. )
  549. try:
  550. ress.extend([d for d in res.embeddings.float])
  551. token_count += res.meta.billed_units.input_tokens
  552. except Exception as _e:
  553. log_exception(_e, res)
  554. return np.array(ress), token_count
  555. def encode_queries(self, text):
  556. res = self.client.embed(
  557. texts=[text],
  558. model=self.model_name,
  559. input_type="search_query",
  560. embedding_types=["float"],
  561. )
  562. try:
  563. return np.array(res.embeddings.float[0]), int(res.meta.billed_units.input_tokens)
  564. except Exception as _e:
  565. log_exception(_e, res)
  566. class TogetherAIEmbed(OpenAIEmbed):
  567. _FACTORY_NAME = "TogetherAI"
  568. def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
  569. if not base_url:
  570. base_url = "https://api.together.xyz/v1"
  571. super().__init__(key, model_name, base_url=base_url)
  572. class PerfXCloudEmbed(OpenAIEmbed):
  573. _FACTORY_NAME = "PerfXCloud"
  574. def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
  575. if not base_url:
  576. base_url = "https://cloud.perfxlab.cn/v1"
  577. super().__init__(key, model_name, base_url)
  578. class UpstageEmbed(OpenAIEmbed):
  579. _FACTORY_NAME = "Upstage"
  580. def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
  581. if not base_url:
  582. base_url = "https://api.upstage.ai/v1/solar"
  583. super().__init__(key, model_name, base_url)
  584. class SILICONFLOWEmbed(Base):
  585. _FACTORY_NAME = "SILICONFLOW"
  586. def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1/embeddings"):
  587. if not base_url:
  588. base_url = "https://api.siliconflow.cn/v1/embeddings"
  589. self.headers = {
  590. "accept": "application/json",
  591. "content-type": "application/json",
  592. "authorization": f"Bearer {key}",
  593. }
  594. self.base_url = base_url
  595. self.model_name = model_name
  596. def encode(self, texts: list):
  597. batch_size = 16
  598. ress = []
  599. token_count = 0
  600. for i in range(0, len(texts), batch_size):
  601. texts_batch = texts[i : i + batch_size]
  602. payload = {
  603. "model": self.model_name,
  604. "input": texts_batch,
  605. "encoding_format": "float",
  606. }
  607. response = requests.post(self.base_url, json=payload, headers=self.headers)
  608. try:
  609. res = response.json()
  610. ress.extend([d["embedding"] for d in res["data"]])
  611. token_count += self.total_token_count(res)
  612. except Exception as _e:
  613. log_exception(_e, response)
  614. return np.array(ress), token_count
  615. def encode_queries(self, text):
  616. payload = {
  617. "model": self.model_name,
  618. "input": text,
  619. "encoding_format": "float",
  620. }
  621. response = requests.post(self.base_url, json=payload, headers=self.headers)
  622. try:
  623. res = response.json()
  624. return np.array(res["data"][0]["embedding"]), self.total_token_count(res)
  625. except Exception as _e:
  626. log_exception(_e, response)
  627. class ReplicateEmbed(Base):
  628. _FACTORY_NAME = "Replicate"
  629. def __init__(self, key, model_name, base_url=None):
  630. from replicate.client import Client
  631. self.model_name = model_name
  632. self.client = Client(api_token=key)
  633. def encode(self, texts: list):
  634. batch_size = 16
  635. token_count = sum([num_tokens_from_string(text) for text in texts])
  636. ress = []
  637. for i in range(0, len(texts), batch_size):
  638. res = self.client.run(self.model_name, input={"texts": texts[i : i + batch_size]})
  639. ress.extend(res)
  640. return np.array(ress), token_count
  641. def encode_queries(self, text):
  642. res = self.client.embed(self.model_name, input={"texts": [text]})
  643. return np.array(res), num_tokens_from_string(text)
  644. class BaiduYiyanEmbed(Base):
  645. _FACTORY_NAME = "BaiduYiyan"
  646. def __init__(self, key, model_name, base_url=None):
  647. import qianfan
  648. key = json.loads(key)
  649. ak = key.get("yiyan_ak", "")
  650. sk = key.get("yiyan_sk", "")
  651. self.client = qianfan.Embedding(ak=ak, sk=sk)
  652. self.model_name = model_name
  653. def encode(self, texts: list, batch_size=16):
  654. res = self.client.do(model=self.model_name, texts=texts).body
  655. try:
  656. return (
  657. np.array([r["embedding"] for r in res["data"]]),
  658. self.total_token_count(res),
  659. )
  660. except Exception as _e:
  661. log_exception(_e, res)
  662. def encode_queries(self, text):
  663. res = self.client.do(model=self.model_name, texts=[text]).body
  664. try:
  665. return (
  666. np.array([r["embedding"] for r in res["data"]]),
  667. self.total_token_count(res),
  668. )
  669. except Exception as _e:
  670. log_exception(_e, res)
  671. class VoyageEmbed(Base):
  672. _FACTORY_NAME = "Voyage AI"
  673. def __init__(self, key, model_name, base_url=None):
  674. import voyageai
  675. self.client = voyageai.Client(api_key=key)
  676. self.model_name = model_name
  677. def encode(self, texts: list):
  678. batch_size = 16
  679. ress = []
  680. token_count = 0
  681. for i in range(0, len(texts), batch_size):
  682. res = self.client.embed(texts=texts[i : i + batch_size], model=self.model_name, input_type="document")
  683. try:
  684. ress.extend(res.embeddings)
  685. token_count += res.total_tokens
  686. except Exception as _e:
  687. log_exception(_e, res)
  688. return np.array(ress), token_count
  689. def encode_queries(self, text):
  690. res = self.client.embed(texts=text, model=self.model_name, input_type="query")
  691. try:
  692. return np.array(res.embeddings)[0], res.total_tokens
  693. except Exception as _e:
  694. log_exception(_e, res)
  695. class HuggingFaceEmbed(Base):
  696. _FACTORY_NAME = "HuggingFace"
  697. def __init__(self, key, model_name, base_url=None):
  698. if not model_name:
  699. raise ValueError("Model name cannot be None")
  700. self.key = key
  701. self.model_name = model_name.split("___")[0]
  702. self.base_url = base_url or "http://127.0.0.1:8080"
  703. def encode(self, texts: list):
  704. embeddings = []
  705. for text in texts:
  706. response = requests.post(f"{self.base_url}/embed", json={"inputs": text}, headers={"Content-Type": "application/json"})
  707. if response.status_code == 200:
  708. embedding = response.json()
  709. embeddings.append(embedding[0])
  710. else:
  711. raise Exception(f"Error: {response.status_code} - {response.text}")
  712. return np.array(embeddings), sum([num_tokens_from_string(text) for text in texts])
  713. def encode_queries(self, text):
  714. response = requests.post(f"{self.base_url}/embed", json={"inputs": text}, headers={"Content-Type": "application/json"})
  715. if response.status_code == 200:
  716. embedding = response.json()
  717. return np.array(embedding[0]), num_tokens_from_string(text)
  718. else:
  719. raise Exception(f"Error: {response.status_code} - {response.text}")
  720. class VolcEngineEmbed(OpenAIEmbed):
  721. _FACTORY_NAME = "VolcEngine"
  722. def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3"):
  723. if not base_url:
  724. base_url = "https://ark.cn-beijing.volces.com/api/v3"
  725. ark_api_key = json.loads(key).get("ark_api_key", "")
  726. model_name = json.loads(key).get("ep_id", "") + json.loads(key).get("endpoint_id", "")
  727. super().__init__(ark_api_key, model_name, base_url)
  728. class GPUStackEmbed(OpenAIEmbed):
  729. _FACTORY_NAME = "GPUStack"
  730. def __init__(self, key, model_name, base_url):
  731. if not base_url:
  732. raise ValueError("url cannot be None")
  733. base_url = urljoin(base_url, "v1")
  734. self.client = OpenAI(api_key=key, base_url=base_url)
  735. self.model_name = model_name
  736. class NovitaEmbed(SILICONFLOWEmbed):
  737. _FACTORY_NAME = "NovitaAI"
  738. def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai/embeddings"):
  739. if not base_url:
  740. base_url = "https://api.novita.ai/v3/openai/embeddings"
  741. super().__init__(key, model_name, base_url)
  742. class GiteeEmbed(SILICONFLOWEmbed):
  743. _FACTORY_NAME = "GiteeAI"
  744. def __init__(self, key, model_name, base_url="https://ai.gitee.com/v1/embeddings"):
  745. if not base_url:
  746. base_url = "https://ai.gitee.com/v1/embeddings"
  747. super().__init__(key, model_name, base_url)
  748. class DeepInfraEmbed(OpenAIEmbed):
  749. _FACTORY_NAME = "DeepInfra"
  750. def __init__(self, key, model_name, base_url="https://api.deepinfra.com/v1/openai"):
  751. if not base_url:
  752. base_url = "https://api.deepinfra.com/v1/openai"
  753. super().__init__(key, model_name, base_url)