| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import hashlib
- import json
- import os
- import random
- import re
- import traceback
- from concurrent.futures import ThreadPoolExecutor
- from copy import deepcopy
- from datetime import datetime
- from io import BytesIO
-
- from elasticsearch_dsl import Q
- from peewee import fn
-
- from api.db.db_utils import bulk_insert_into_db
- from api.settings import stat_logger
- from api.utils import current_timestamp, get_format_time, get_uuid
- from api.utils.file_utils import get_project_base_directory
- from graphrag.mind_map_extractor import MindMapExtractor
- from rag.settings import SVR_QUEUE_NAME
- from rag.utils.es_conn import ELASTICSEARCH
- from rag.utils.storage_factory import STORAGE_IMPL
- from rag.nlp import search, rag_tokenizer
-
- from api.db import FileType, TaskStatus, ParserType, LLMType
- from api.db.db_models import DB, Knowledgebase, Tenant, Task
- from api.db.db_models import Document
- from api.db.services.common_service import CommonService
- from api.db.services.knowledgebase_service import KnowledgebaseService
- from api.db import StatusEnum
- from rag.utils.redis_conn import REDIS_CONN
-
-
- class DocumentService(CommonService):
- model = Document
-
- @classmethod
- @DB.connection_context()
- def get_list(cls, kb_id, page_number, items_per_page,
- orderby, desc, keywords, id):
- docs =cls.model.select().where(cls.model.kb_id==kb_id)
- if id:
- docs = docs.where(
- cls.model.id== id )
- if keywords:
- docs = docs.where(
- fn.LOWER(cls.model.name).contains(keywords.lower())
- )
- count = docs.count()
- if desc:
- docs = docs.order_by(cls.model.getter_by(orderby).desc())
- else:
- docs = docs.order_by(cls.model.getter_by(orderby).asc())
-
- docs = docs.paginate(page_number, items_per_page)
-
- return list(docs.dicts()), count
-
-
- @classmethod
- @DB.connection_context()
- def get_by_kb_id(cls, kb_id, page_number, items_per_page,
- orderby, desc, keywords):
- if keywords:
- docs = cls.model.select().where(
- (cls.model.kb_id == kb_id),
- (fn.LOWER(cls.model.name).contains(keywords.lower()))
- )
- else:
- docs = cls.model.select().where(cls.model.kb_id == kb_id)
- count = docs.count()
- if desc:
- docs = docs.order_by(cls.model.getter_by(orderby).desc())
- else:
- docs = docs.order_by(cls.model.getter_by(orderby).asc())
-
- docs = docs.paginate(page_number, items_per_page)
-
- return list(docs.dicts()), count
-
- @classmethod
- @DB.connection_context()
- def list_documents_in_dataset(cls, dataset_id, offset, count, order_by, descend, keywords):
- if keywords:
- docs = cls.model.select().where(
- (cls.model.kb_id == dataset_id),
- (fn.LOWER(cls.model.name).contains(keywords.lower()))
- )
- else:
- docs = cls.model.select().where(cls.model.kb_id == dataset_id)
-
- total = docs.count()
-
- if descend == 'True':
- docs = docs.order_by(cls.model.getter_by(order_by).desc())
- if descend == 'False':
- docs = docs.order_by(cls.model.getter_by(order_by).asc())
-
- docs = list(docs.dicts())
- docs_length = len(docs)
-
- if offset < 0 or offset > docs_length:
- raise IndexError("Offset is out of the valid range.")
-
- if count == -1:
- return docs[offset:], total
-
- return docs[offset:offset + count], total
-
- @classmethod
- @DB.connection_context()
- def insert(cls, doc):
- if not cls.save(**doc):
- raise RuntimeError("Database error (Document)!")
- e, doc = cls.get_by_id(doc["id"])
- if not e:
- raise RuntimeError("Database error (Document retrieval)!")
- e, kb = KnowledgebaseService.get_by_id(doc.kb_id)
- if not KnowledgebaseService.update_by_id(
- kb.id, {"doc_num": kb.doc_num + 1}):
- raise RuntimeError("Database error (Knowledgebase)!")
- return doc
-
- @classmethod
- @DB.connection_context()
- def remove_document(cls, doc, tenant_id):
- ELASTICSEARCH.deleteByQuery(
- Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
- cls.clear_chunk_num(doc.id)
- return cls.delete_by_id(doc.id)
-
- @classmethod
- @DB.connection_context()
- def get_newly_uploaded(cls):
- fields = [
- cls.model.id,
- cls.model.kb_id,
- cls.model.parser_id,
- cls.model.parser_config,
- cls.model.name,
- cls.model.type,
- cls.model.location,
- cls.model.size,
- Knowledgebase.tenant_id,
- Tenant.embd_id,
- Tenant.img2txt_id,
- Tenant.asr_id,
- cls.model.update_time]
- docs = cls.model.select(*fields) \
- .join(Knowledgebase, on=(cls.model.kb_id == Knowledgebase.id)) \
- .join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))\
- .where(
- cls.model.status == StatusEnum.VALID.value,
- ~(cls.model.type == FileType.VIRTUAL.value),
- cls.model.progress == 0,
- cls.model.update_time >= current_timestamp() - 1000 * 600,
- cls.model.run == TaskStatus.RUNNING.value)\
- .order_by(cls.model.update_time.asc())
- return list(docs.dicts())
-
- @classmethod
- @DB.connection_context()
- def get_unfinished_docs(cls):
- fields = [cls.model.id, cls.model.process_begin_at, cls.model.parser_config, cls.model.progress_msg, cls.model.run]
- docs = cls.model.select(*fields) \
- .where(
- cls.model.status == StatusEnum.VALID.value,
- ~(cls.model.type == FileType.VIRTUAL.value),
- cls.model.progress < 1,
- cls.model.progress > 0)
- return list(docs.dicts())
-
- @classmethod
- @DB.connection_context()
- def increment_chunk_num(cls, doc_id, kb_id, token_num, chunk_num, duation):
- num = cls.model.update(token_num=cls.model.token_num + token_num,
- chunk_num=cls.model.chunk_num + chunk_num,
- process_duation=cls.model.process_duation + duation).where(
- cls.model.id == doc_id).execute()
- if num == 0:
- raise LookupError(
- "Document not found which is supposed to be there")
- num = Knowledgebase.update(
- token_num=Knowledgebase.token_num +
- token_num,
- chunk_num=Knowledgebase.chunk_num +
- chunk_num).where(
- Knowledgebase.id == kb_id).execute()
- return num
-
- @classmethod
- @DB.connection_context()
- def decrement_chunk_num(cls, doc_id, kb_id, token_num, chunk_num, duation):
- num = cls.model.update(token_num=cls.model.token_num - token_num,
- chunk_num=cls.model.chunk_num - chunk_num,
- process_duation=cls.model.process_duation + duation).where(
- cls.model.id == doc_id).execute()
- if num == 0:
- raise LookupError(
- "Document not found which is supposed to be there")
- num = Knowledgebase.update(
- token_num=Knowledgebase.token_num -
- token_num,
- chunk_num=Knowledgebase.chunk_num -
- chunk_num
- ).where(
- Knowledgebase.id == kb_id).execute()
- return num
-
- @classmethod
- @DB.connection_context()
- def clear_chunk_num(cls, doc_id):
- doc = cls.model.get_by_id(doc_id)
- assert doc, "Can't fine document in database."
-
- num = Knowledgebase.update(
- token_num=Knowledgebase.token_num -
- doc.token_num,
- chunk_num=Knowledgebase.chunk_num -
- doc.chunk_num,
- doc_num=Knowledgebase.doc_num-1
- ).where(
- Knowledgebase.id == doc.kb_id).execute()
- return num
-
- @classmethod
- @DB.connection_context()
- def get_tenant_id(cls, doc_id):
- docs = cls.model.select(
- Knowledgebase.tenant_id).join(
- Knowledgebase, on=(
- Knowledgebase.id == cls.model.kb_id)).where(
- cls.model.id == doc_id, Knowledgebase.status == StatusEnum.VALID.value)
- docs = docs.dicts()
- if not docs:
- return
- return docs[0]["tenant_id"]
-
- @classmethod
- @DB.connection_context()
- def get_tenant_id_by_name(cls, name):
- docs = cls.model.select(
- Knowledgebase.tenant_id).join(
- Knowledgebase, on=(
- Knowledgebase.id == cls.model.kb_id)).where(
- cls.model.name == name, Knowledgebase.status == StatusEnum.VALID.value)
- docs = docs.dicts()
- if not docs:
- return
- return docs[0]["tenant_id"]
-
- @classmethod
- @DB.connection_context()
- def get_embd_id(cls, doc_id):
- docs = cls.model.select(
- Knowledgebase.embd_id).join(
- Knowledgebase, on=(
- Knowledgebase.id == cls.model.kb_id)).where(
- cls.model.id == doc_id, Knowledgebase.status == StatusEnum.VALID.value)
- docs = docs.dicts()
- if not docs:
- return
- return docs[0]["embd_id"]
-
- @classmethod
- @DB.connection_context()
- def get_doc_id_by_doc_name(cls, doc_name):
- fields = [cls.model.id]
- doc_id = cls.model.select(*fields) \
- .where(cls.model.name == doc_name)
- doc_id = doc_id.dicts()
- if not doc_id:
- return
- return doc_id[0]["id"]
-
- @classmethod
- @DB.connection_context()
- def get_thumbnails(cls, docids):
- fields = [cls.model.id, cls.model.thumbnail]
- return list(cls.model.select(
- *fields).where(cls.model.id.in_(docids)).dicts())
-
- @classmethod
- @DB.connection_context()
- def update_parser_config(cls, id, config):
- e, d = cls.get_by_id(id)
- if not e:
- raise LookupError(f"Document({id}) not found.")
-
- def dfs_update(old, new):
- for k, v in new.items():
- if k not in old:
- old[k] = v
- continue
- if isinstance(v, dict):
- assert isinstance(old[k], dict)
- dfs_update(old[k], v)
- else:
- old[k] = v
- dfs_update(d.parser_config, config)
- cls.update_by_id(id, {"parser_config": d.parser_config})
-
- @classmethod
- @DB.connection_context()
- def get_doc_count(cls, tenant_id):
- docs = cls.model.select(cls.model.id).join(Knowledgebase,
- on=(Knowledgebase.id == cls.model.kb_id)).where(
- Knowledgebase.tenant_id == tenant_id)
- return len(docs)
-
- @classmethod
- @DB.connection_context()
- def begin2parse(cls, docid):
- cls.update_by_id(
- docid, {"progress": random.random() * 1 / 100.,
- "progress_msg": "Task dispatched...",
- "process_begin_at": get_format_time()
- })
-
- @classmethod
- @DB.connection_context()
- def update_progress(cls):
- docs = cls.get_unfinished_docs()
- for d in docs:
- try:
- tsks = Task.query(doc_id=d["id"], order_by=Task.create_time)
- if not tsks:
- continue
- msg = []
- prg = 0
- finished = True
- bad = 0
- e, doc = DocumentService.get_by_id(d["id"])
- status = doc.run#TaskStatus.RUNNING.value
- for t in tsks:
- if 0 <= t.progress < 1:
- finished = False
- prg += t.progress if t.progress >= 0 else 0
- if t.progress_msg not in msg:
- msg.append(t.progress_msg)
- if t.progress == -1:
- bad += 1
- prg /= len(tsks)
- if finished and bad:
- prg = -1
- status = TaskStatus.FAIL.value
- elif finished:
- if d["parser_config"].get("raptor", {}).get("use_raptor") and d["progress_msg"].lower().find(" raptor")<0:
- queue_raptor_tasks(d)
- prg = 0.98 * len(tsks)/(len(tsks)+1)
- msg.append("------ RAPTOR -------")
- else:
- status = TaskStatus.DONE.value
-
- msg = "\n".join(msg)
- info = {
- "process_duation": datetime.timestamp(
- datetime.now()) -
- d["process_begin_at"].timestamp(),
- "run": status}
- if prg != 0:
- info["progress"] = prg
- if msg:
- info["progress_msg"] = msg
- cls.update_by_id(d["id"], info)
- except Exception as e:
- if str(e).find("'0'") < 0:
- stat_logger.error("fetch task exception:" + str(e))
-
- @classmethod
- @DB.connection_context()
- def get_kb_doc_count(cls, kb_id):
- return len(cls.model.select(cls.model.id).where(
- cls.model.kb_id == kb_id).dicts())
-
-
- @classmethod
- @DB.connection_context()
- def do_cancel(cls, doc_id):
- try:
- _, doc = DocumentService.get_by_id(doc_id)
- return doc.run == TaskStatus.CANCEL.value or doc.progress < 0
- except Exception as e:
- pass
- return False
-
-
- def queue_raptor_tasks(doc):
- def new_task():
- nonlocal doc
- return {
- "id": get_uuid(),
- "doc_id": doc["id"],
- "from_page": 0,
- "to_page": -1,
- "progress_msg": "Start to do RAPTOR (Recursive Abstractive Processing For Tree-Organized Retrieval)."
- }
-
- task = new_task()
- bulk_insert_into_db(Task, [task], True)
- task["type"] = "raptor"
- assert REDIS_CONN.queue_product(SVR_QUEUE_NAME, message=task), "Can't access Redis. Please check the Redis' status."
-
-
- def doc_upload_and_parse(conversation_id, file_objs, user_id):
- from rag.app import presentation, picture, naive, audio, email
- from api.db.services.dialog_service import ConversationService, DialogService
- from api.db.services.file_service import FileService
- from api.db.services.llm_service import LLMBundle
- from api.db.services.user_service import TenantService
- from api.db.services.api_service import API4ConversationService
-
- e, conv = ConversationService.get_by_id(conversation_id)
- if not e:
- e, conv = API4ConversationService.get_by_id(conversation_id)
- assert e, "Conversation not found!"
-
- e, dia = DialogService.get_by_id(conv.dialog_id)
- kb_id = dia.kb_ids[0]
- e, kb = KnowledgebaseService.get_by_id(kb_id)
- if not e:
- raise LookupError("Can't find this knowledgebase!")
-
- idxnm = search.index_name(kb.tenant_id)
- if not ELASTICSEARCH.indexExist(idxnm):
- ELASTICSEARCH.createIdx(idxnm, json.load(
- open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
-
- embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id, lang=kb.language)
-
- err, files = FileService.upload_document(kb, file_objs, user_id)
- assert not err, "\n".join(err)
-
- def dummy(prog=None, msg=""):
- pass
-
- FACTORY = {
- ParserType.PRESENTATION.value: presentation,
- ParserType.PICTURE.value: picture,
- ParserType.AUDIO.value: audio,
- ParserType.EMAIL.value: email
- }
- parser_config = {"chunk_token_num": 4096, "delimiter": "\n!?;。;!?", "layout_recognize": False}
- exe = ThreadPoolExecutor(max_workers=12)
- threads = []
- doc_nm = {}
- for d, blob in files:
- doc_nm[d["id"]] = d["name"]
- for d, blob in files:
- kwargs = {
- "callback": dummy,
- "parser_config": parser_config,
- "from_page": 0,
- "to_page": 100000,
- "tenant_id": kb.tenant_id,
- "lang": kb.language
- }
- threads.append(exe.submit(FACTORY.get(d["parser_id"], naive).chunk, d["name"], blob, **kwargs))
-
- for (docinfo, _), th in zip(files, threads):
- docs = []
- doc = {
- "doc_id": docinfo["id"],
- "kb_id": [kb.id]
- }
- for ck in th.result():
- d = deepcopy(doc)
- d.update(ck)
- md5 = hashlib.md5()
- md5.update((ck["content_with_weight"] +
- str(d["doc_id"])).encode("utf-8"))
- d["_id"] = md5.hexdigest()
- d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
- d["create_timestamp_flt"] = datetime.now().timestamp()
- if not d.get("image"):
- docs.append(d)
- continue
-
- output_buffer = BytesIO()
- if isinstance(d["image"], bytes):
- output_buffer = BytesIO(d["image"])
- else:
- d["image"].save(output_buffer, format='JPEG')
-
- STORAGE_IMPL.put(kb.id, d["_id"], output_buffer.getvalue())
- d["img_id"] = "{}-{}".format(kb.id, d["_id"])
- del d["image"]
- docs.append(d)
-
- parser_ids = {d["id"]: d["parser_id"] for d, _ in files}
- docids = [d["id"] for d, _ in files]
- chunk_counts = {id: 0 for id in docids}
- token_counts = {id: 0 for id in docids}
- es_bulk_size = 64
-
- def embedding(doc_id, cnts, batch_size=16):
- nonlocal embd_mdl, chunk_counts, token_counts
- vects = []
- for i in range(0, len(cnts), batch_size):
- vts, c = embd_mdl.encode(cnts[i: i + batch_size])
- vects.extend(vts.tolist())
- chunk_counts[doc_id] += len(cnts[i:i + batch_size])
- token_counts[doc_id] += c
- return vects
-
- _, tenant = TenantService.get_by_id(kb.tenant_id)
- llm_bdl = LLMBundle(kb.tenant_id, LLMType.CHAT, tenant.llm_id)
- for doc_id in docids:
- cks = [c for c in docs if c["doc_id"] == doc_id]
-
- if parser_ids[doc_id] != ParserType.PICTURE.value:
- mindmap = MindMapExtractor(llm_bdl)
- try:
- mind_map = json.dumps(mindmap([c["content_with_weight"] for c in docs if c["doc_id"] == doc_id]).output,
- ensure_ascii=False, indent=2)
- if len(mind_map) < 32: raise Exception("Few content: " + mind_map)
- cks.append({
- "id": get_uuid(),
- "doc_id": doc_id,
- "kb_id": [kb.id],
- "docnm_kwd": doc_nm[doc_id],
- "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc_nm[doc_id])),
- "content_ltks": "",
- "content_with_weight": mind_map,
- "knowledge_graph_kwd": "mind_map"
- })
- except Exception as e:
- stat_logger.error("Mind map generation error:", traceback.format_exc())
-
- vects = embedding(doc_id, [c["content_with_weight"] for c in cks])
- assert len(cks) == len(vects)
- for i, d in enumerate(cks):
- v = vects[i]
- d["q_%d_vec" % len(v)] = v
- for b in range(0, len(cks), es_bulk_size):
- ELASTICSEARCH.bulk(cks[b:b + es_bulk_size], idxnm)
-
- DocumentService.increment_chunk_num(
- doc_id, kb.id, token_counts[doc_id], chunk_counts[doc_id], 0)
-
- return [d["id"] for d,_ in files]
|